Fermilab SCD Post-Doc Talk

Maya Wospakrik

March 3, 2020

A quick reminder about myself...

SBN Program

SBN Program

1. Explore Sterile ν Oscillations

- Detailed sensitivity analysis includes cosmics backgrounds, correlated flux & cross section systematics, and beam backgrounds.
 - The SBN program will exclude the LSND 99% CL region at 5σ in 3 years of taking data in the BNB

2. MiniBooNE Follow-up

Data Collected by MicroBooNE

- Surface-based, 85 ton active volume liquid argon
- Collecting cosmic and neutrino data since Fall 2015 with good uptime and purity
- Target is to make data collected until July 2019 available to be analyzed

When electron drift through the argon...

When electron drift through the argon...

A bit more about space charge...

Two distinct features:

- A **squeezing** of the sides of the tracks in the transverse TPC directions that somewhat resemble a rotation ("A")
- A **bowing** of the track toward the cathode that is most pronounced in the middle of the TPC ("B").
- We simulate this effects and correct it out at the calibration stage.

dQdx Calibration

Corrects for the misconfigured TPC channels, space charge effect, transverse diffusion

$$(dQ/dx)_{Corrected}^{data} = (dQ/dx)_{Reconstructed} \cdot C_{YZ}$$

$$(dQ/dx)_{Corrected}^{MC} = (dQ/dx)_{Reconstructed} \cdot C_{YZ}$$

This YZ map is used to "smear" simulation to mimic data when we overlaid some cosmic data as part of our simulation also known as "overlay"

dQdx Calibration

- First calibration in LArTPC using the dedicated data-driven Space Charge Effects map provided by the University of Bern, CSU, and University of Minesota colleagues.
- Show that we can recover our "perfect calibration" sample to a good precision.
- Better detector simulation effects that better match our data as the input for the simulation

When electron drift through the argon...

Electron Lifetime

 Once the SCE are corrected, we can disentangle the electron lifetime effect from the convoluted : and t dependent detector effects

$$\frac{Q_A}{Q_C} = \exp(-t_{\rm drift}/\tau) \implies \tau_0 = \frac{(1/slope)}{v_d}$$

• Errors on the measurement is < 0.5%

Ensure that we are extracting the lifetime within 1% for smaller lifetime

The value extracted in data will be used as the input drift lifetime and will be calibrated later

Flux and Cross Section Systematics

The flux and cross-section systematics are all calculated by weighing a central value according to different variations.

For example, axial mass for CC quasi-elastic, π absorption probability for neutrino interactions, and horn current, π^{\pm} production in flux.

The covariance matrix :

$$E_{ij}^{sys} = \frac{1}{N} \Sigma_k^N \left(N_i^{CV} - N_i^k \right) \left(N_j^{CV} - N_j^k \right)$$

Where N is the total number of variations, N_i^k is the value in the CV in the *i*-th bin of the k -th variation and N_i^{CV} is that of the central value.

Detector Systematics

- New method for detector systematics based on comparisons between data and MC, propagated to physics analyses by wire modification.
- Consider the detector's response to an energy deposition as a function of the relevant variables: x, (y, z), (θ, φ), and dE/dx
- Characterize the detector's response in terms of the charge and width of gaussian hits — using these as proxy for wire waveform properties

Detector Systematics

- Measure the values of Q and σ of hits vs. x
- Look at difference in data and simulation to bound detector differences in Q and σ, then perform a fit to those points to get the continuous functions RQ and Rσ
- Modify hits/wavefroms in simulation by that difference and rerun reconstruction, treating difference as a systematic
- The same ratio is also extracted in other variables and then propagated as alternate samples to the central value.

Hit Charge Run 1 vs MC CV Ratio

Event Selection

- Working with 'Pandora' pattern-recognition reconstruction framework (standard reconstruction tool in MicroBooNE) focusing on the excess related to electron channels.
- Muon Neutrino selection is used to constrain systematics

SBNfit

- Framework designed to perform simultaneous fits across data from multiple, correlated distributions.
- Developed by MicroBooNE/SBN collaborators at Columbia University (Georgia Karagiorgi, Mark Ross–Lonergan, Guanqun, Davio Cianci, et al.)

Multi-mode	Multi-detector	Multi-channel
 Neutrino/anti- neutrino BNB/Numi Beam 	 SBN: SBND+MicroBooNE+ICA RUS MiniBooNE+MicroBooNE SBN+DUNE 	 1 electron only 1 electron + N proton 1 muon + N proton

Allows for combined fitting of *arbitrarily large* number of modes, detectors and channels simultaneously, fully accounting for systematic correlations.

Constraining Systematics

Each detector shares the same neutrino flux and argon cross-sections measurement is highly correlated.

Exploit the correlations between the $\nu_{\mu} - \nu_{e}$ channels to reduce systematic uncertainties.

Combined analysis:

1) using multiple selections and observables

2) taking into account correlated systematic uncertainties through a covariance matrix

10

15

20

Global Bin Number

nu uBooNE nue intrinsic

0

5

-0.2

-0.4

-0.6

Not final selection

Constraining Systematics using ν_{μ} selection

Cartoon example

Sensitivity

[On-going work]

Have to simulate many experiments under the H0 hypothesis (no low energy excess), and H1 hypothesis .

For each toy experiment, $\Delta \chi^2$ is calculated as $\Delta \chi^2 = \sum_{i,j=1}^N \left((n^i - \mu^i_{H_1}) E^{-1}_{i,j} (n^j - \mu^j_{H_1}) - (n^i - \mu^i_{H_0}) E^{-1}_{i,j} (n^j - \mu^j_{H_0}) \right)$

to obtain the $\Delta \chi^2$ distribution.

The sensitivity quoted is the median sensitivity.

Looking Ahead

- Finalizing the systematics constraint, to include the $1e0p0\pi$ and ν_{μ} channel in the constraint.
- Working on including detector systematics into the constraint and the final sensitivity.
- Finalizing the analysis internal note to be circulated to the group's Editorial Board
- Target: Neutrino 2020.

SBNfit χ^2 Test Statistics for Oscillation Analysis

Feldman cousins method

- 1. Given observed data spectrum D
- 2. Find the grid point with the minimum χ^2
- 3. Calculate $\Delta \chi^2$ at each grid point
- 4. Calculate exactly the value of that 90% of experiments would be in by generating pseudo experiments.
- 5. Do this for 3σ (10⁴ pseudo experiments/"universes") and 5σ (~10⁸ pseudo experiments/"universes")

Accelerating SBNFit Feldman Cousins on HPC

Accelerating SBNFit Feldman Cousins on HPC

Scaling with N universes & N grid points

Scaling of the program run time with the number of universes, demonstrating a linear dependence on Nuniv Scaling of the program run time with the number of grid points, demonstrating a quadratic dependence on Nuniv.

Scaling on single node

Measurement of the single Haswell node performance for a fixed problem size.

Measurement of the single KNL node performance for a fixed problem size

Scaling on Multi-node

Strong scaling measurements on Haswell nodes.

Generally good scaling up to the point where the amount of work per rank becomes relatively small.

$\Delta (Y \cdot O)$	$N_{ m univ} = 10^4 \ (3\sigma)$	$N_{ m univ} = 10^8 \ (5\sigma)$
Cori phase 1 (Haswell)	$7.2 imes 10^5$	7.2×10^{3}
Cori phase 2 (KNL)	$1.2 imes 10^6$	1.2×10^4

Table 3: Upper boundaries on grid sizes that can be processed when running *a full day* on all of Cori phase 1/2.

Looking Ahead

- Technical paper that highlights the improvement gained from the parallelization and its scalability at HPC titled "Grid-based minimization at scale: Feldman-Cousins corrections for SBN" has been submitted to arXiv: https://arxiv.org/abs/2002.07858
- Physics paper
 - A broader-scope SBN sensitivity/physics paper (in discussion)
 - Perform the non-FC method vs FC method. Compare the sensitivity outcomes for the two methods.
 - Testing the effects of different parameterizations of systematics, study biases and model dependencies of the current analysis
- Plan is to continue optimizing SBNfit fitting framework using GPU accelerators (Kokkos to replace Eigen3) and move away from the grid-based approach to allow us to probe higher dimension (3N+2 scenario).
- Plan to present the results on technical conferences (ICHEP).

Backup