Overview of the Vacuum Pumping Systems for the SPARC Tokamak

Oliver (Ollie) Mulvany¹, Christian Day², Matt Fillion¹, James Fountas¹, Adam Kuang¹, Fabio Ravelli¹ ¹Commonwealth Fusion Systems, ²Karlsruhe Institute of Technology

OLAV VI Workshop – April 17, 2024**Commonwealth Fusion Systems**

W

Outline

- Brief Introduction to CFS and SPARC
- SPARC Vacuum Pumping Systems
	- Cryostat Pumping System
	- Leak Detection System
	- Torus Pumping System

Brief Introduction to CFS and SPARC

CFS Mission is to Deliver Commercial Fusion Energy

- Commonwealth Fusion Systems was founded in 2018
- Spun out of MIT with the goal of commercializing fusion energy to combat climate change
- Raised more than \$2 billion
- Diverse team, with people from startups, industry, national labs, academia, and many external partners worldwide
- More than 650 employees
- Core Technology: high-temperature superconducting (HTS) magnets allow for a compact tokamak

Construction of SPARC and Magnet Factory in Devens, MA

4/15/2024 COPYRIGHT 5

CFS Vision

4/15/2024 COPYRIGHT 7

SPARC Overview

- Heavily peer-reviewed and validated by simulations
- Will close gaps in physics, technology, and manufacturing supply chains for ARC
- Expected to achieve $Q>1$ during first campaign
- Comprises many sub-systems
	- Vacuum Vessel Systems e.g., vacuum vessel, plasma-facing components, vessel conditioning
	- Cryogenic Systems e.g., cryostat, cryoplant
	- Magnet Systems e.g., toroidal and poloidal field coils
	- **Vacuum Pumping Systems**
	- Diagnostics suite to monitor SPARC performance
	- Fueling and Tritium Management Systems
	- RF Heating Systems e.g., ion cyclotron RF system
	- Central Control Systems, and more…

SPARC Vacuum Pumping Systems

SPARC Vacuum Pumping Systems

- Cryostat Pumping System (CPMP): Vacuum insulation for superconducting magnets and other structures
- Leak Detection System (LKDT):
- 1. Vacuum guard for SPARC vacuum interspaces and double seals
- 2. Secondary tritium containment
- Service Pumping System (SPMP): Mobile pumping carts for SPARC auxiliary systems requiring rough or high vacuum
- Torus Pumping System (TPMP):
- 1. Maintain torus base pressure and pressure between plasma pulses
- 2. Neutral particle (He "ash") control through divertor region pumping
- 3. Primary tritium containment

• Plasma operations Some Challenges

- One "pulse" every 20 minutes
- Ramp up in \sim 9 s to maximum current
- Ramp up in ~9 s to maximum current
Flattop for 10 s, achieving maximum P_{fusion}
- Ramp down in $~10 s$
- Transient & high strength magnetic field
	- Magnetic field is ~0.5 T where VACP components begin
	- Influences material and equipment choices
	- Magnetic shielding = large electromagnetic forces and plasma perturbations

10

- Must avoid electrical loops
- Radiation
	- High neutron fluence over the lifetime of SPARC
		- Component damage, e.g., seals and electronics
		- Undesirable heating of components, e.g., cryopump stages
	- Primary and secondary tritium boundaries
- Design & fabrication for vacuum *many* systems and components in vacuum

 10

5

 15

 $t(s)$

 20

 25

Cryostat Pumping System (CPMP)

What's in Cryostat Vacuum?

- Cryostat
	- Large vessel, $d_0 \approx 9.2$ m, h ≈ 9 m
	- 316/316L stainless steel fabrication
- Thermal shields
	- GHe-cooled
	- 316/316L stainless steel fabrication
	- Silver plated to minimize emissivity
	- MLI to enhance thermal radiation protection
- HTS and copper magnets
	- Most LHe-cooled, some others conduction-cooled
	- In-vessel magnet supports
- Power feed lines for magnets
	- Use of non-metallics, e.g., in-situ cable joints
- Vacuum vessel (VV) *details in coming slides*
- Boron carbide (B_4C) neutron shielding
- Lots of additional hardware, e.g., bolts, brackets, thermal/electrical insulation

CPMP Layout

- Two parallel pumping trains: DN540 \rightarrow DN200 \rightarrow DN100 (roughing line & TMP backing line)
- Discharges to stack, but can be directed to trace tritium recovery (TTR) system
- Radiation-compatible vacuum gauges and RGA

CPMP Pump-Down

- vacuum components
- All-metal sealed CF flanges with copper gaskets, including rough vacuum section
- Vacuum volume, $V \approx 312 \text{ m}^3$
- Internal component surface area \approx 3500 m²
- Calculated with VacTran
	- Base pressure of **1.3E-3 Pa** reached after **370 hrs (16 days)**
	- Permits cool -down of magnets and structures

Leak Detection System (LKDT)

Briefly on LKDT

- Rough vacuum pump-down (~100 Pa) and monitoring of vacuum "clients"
- Two parallel pumping lines: DN63 \rightarrow DN200 \rightarrow DN100
- Discharges to TTR system or stack
- Radiation-compatible vacuum gauges and RGA

Screw Pumps

2x

DN63CF

Torus Pumping System (TPMP)

What's in Torus Vacuum?

- Vacuum vessel: $d_i \approx 2.3$ m, $d_o \approx 5.7$ m, h ≈ 3.5 m
	- Double-walled to permit gaseous heating and cooling
	- Primarily XM-19 (Nitronic 50) fabrication
- Ports and port plugs
	- Essentially large vacuum feedthroughs to the vacuum vessel for RF plasma heating, fueling, diagnostics, etc.
- Plasma facing components (PFCs)
	- Composed of many tungsten alloy tiles
	- Heat fluxes up to 200 MW/ m^2 in divertor
	- Plasma disruptions = flash heating possible
	- "Boronization" as oxygen getter and impurity trap [5]
- Fuel injection (helium, hydrogen, deuterium, **tritium**, etc.)
- Boron carbide (B_4C) neutron shielding also reduces vacuum conductance in ports
- 4/15/2024 **СОРҮКІ**GHT 18 • Lots of additional hardware

TPMP Layout

- Two parallel pumping trains: DN540 \rightarrow DN200 \rightarrow DN100 (roughing line & TMP backing line)
- At low tritium concentrations, VV pumping (VVP) discharges to TTR system
- Divertor neutral pumping system (DNP) regenerates into the VV, and gas is directed to torus exhaust purification (TEP) system via VVP – higher content of tritium anticipated
- Radiation-compatible vacuum gauges and RGA

TPMP Pump-Down

- - beginning and end of campaigns:
		- "High temperature" bake to 350 ° C
		- Glow discharge cleaning
	- More frequent vessel condition during campaigns:
		- "Low temperature" bake to 150°C
		- Ion cyclotron discharge cleaning via intentionally poorly confined plasma
- All -metal sealed, double -walled components (electrical breaks, bellows), tritium -compatible
- Vacuum volume, $V \approx 70$ m³
- Internal component surface area ≈ 1500 m²
- Calculated with VacTran
	- Base pressure of **5E-6 Pa** reached after **825 hrs (~35 days)**
		- *Not including cryopumps or vacuum vessel bake-out*
	- Inter-pulse pressure of **1E-4 Pa** reached after **12 minutes**

Divertor Neutral Pumping

- What is a divertor?
	- 1. Primary exhaust for heat and ash produced by the fusion reaction
	- 2. Protects surrounding walls from thermal loads
	- 3. Minimizes plasma contamination [6]
- QTY 8 "toroidally symmetric" pumps in divertor region
- Pumped via custom cryopumps
	- Closed-loop, refrigerator-cooled
	- Tritium compatible
	- Halogen-free and radiation-resistant charcoal binder
	- Added thermal mass on second stage for increased throughput
	- Transient operation due to nature of plasma pulses
- Effective pumping speed analyzed using transitional flow capabilities of COMSOL, with B_4C shielding geometry accounted for
- Variable conductance vacuum valve allows:
	- 1. Neutral gas pressure control within the divertor
	- 2. Fast-actuated closure during disruption mitigation events (~100 ms)

Large Bore Piping to Maximize Vacuum Conductance

- CPMP & TPMP require ~50 m total of large bore piping, $D \approx 540$ mm
- Flange seals must be suitable for UHV and radiation environment
	- Double spring-energized metal seals with interspace pumping or a CF gasket
- Calculations completed and prototyping efforts underway for a large rotatable and nonrotatable CF-style knife-edge flange
	- Documented use of similar sizes at CERN and GSI FAIR
- Custom large bore, two-ply electrical breaks and bellows also required for TPMP

$\frac{1}{2}$ Commonwealth
 $\frac{1}{2}$ Fusion Systems

Thank you!

 $4/15/2$ corresponding to the corresponding to the corresponding $\mathcal{R}(R, \mathbb{S})$

References

- 1. R. F. Vieira *et al.,* "Design, Fabrication, and Assembly of the SPARC Toroidal Field Model Coil," in IEEE Transactions on Applied Superconductivity, vol. 34, no. 2, pp. 1-15, March 2024, Art no. 0600615, doi: 10.1109/TASC.2024.3356571
- 2. A. J. Creely *et al.,* "Overview of the SPARC tokamak," Journal of Plasma Physics, vol. 86, no. 5, p. 865860502, 2020. doi:10.1017/S0022377820001257
- 3. Wikipedia, "Deuterium-tritium fusion," 09 February 2024. [Online]. Available: https://en.wikipedia.org/wiki/Deuterium%E2%80%93tritium_fusion.
- 4. A. J. Creely *et al.*, "SPARC as a platform to advance tokamak science," Physics of Plasmas, vol. 30, no. 9, Sep. 2023, doi:10.1063/5.0162457
- 5. ITER, "Wall conditioning a coat of boron to capture impurities, " 16 October 2024. [Online]. Available: https://www.iter.org/newsline/-/3948
- 6. ITER, "Divertor", [Online]. Available: https://www.iter.org/mach/Divertor

Find more CFS publications at <https://cfs.energy/technology/publications>