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• Brief Introduction to CFS and SPARC

• SPARC Vacuum Pumping Systems
• Cryostat Pumping System

• Leak Detection System

• Torus Pumping System

Outline
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Brief Introduction to 
CFS and SPARC
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• Commonwealth Fusion Systems was 
founded in 2018

• Spun out of MIT with the goal of 
commercializing fusion energy to combat 
climate change

• Raised more than $2 billion

• Diverse team, with people from startups, 
industry, national labs, academia, and
many external partners worldwide

• More than 650 employees

• Core Technology: high-temperature 
superconducting (HTS) magnets allow for a 
compact tokamak

CFS Mission is to Deliver Commercial Fusion Energy
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Construction of SPARC and Magnet Factory in Devens, MA
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CFS Vision

Building on 
tokamak physics 
demonstrated in 
machines around 
the world

COMPLETED:
Demonstrate groundbreaking 
HTS magnets  

SPARC CONSTRUCTION UNDERWAY:
SPARC Q>1
Achieve net fusion energy

EARLY 2030s:
ARC deployed
~400 MWe

Commercially relevant 
net fusion energy [2] Carbon-free commercial 

power on the grid

SPARC-relevant scale, achieved 
~20 T peak field on conductor [1]
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• Heavily peer-reviewed and validated by simulations

• Will close gaps in physics, technology, and manufacturing supply chains for ARC

• Expected to achieve Q>1 during first campaign

• Comprises many sub-systems
• Vacuum Vessel Systems – e.g., vacuum vessel,

plasma-facing components, vessel conditioning

• Cryogenic Systems – e.g., cryostat, cryoplant

• Magnet Systems – e.g., toroidal and poloidal
field coils

• Vacuum Pumping Systems

• Diagnostics – suite to monitor SPARC performance

• Fueling and Tritium Management Systems

• RF Heating Systems – e.g., ion cyclotron RF system

• Central Control Systems, and more…

SPARC Overview
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SPARC Vacuum 
Pumping Systems
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SPARC Vacuum Pumping Systems

• Cryostat Pumping System (CPMP):
Vacuum insulation for superconducting
magnets and other structures

• Leak Detection System (LKDT):

1. Vacuum guard for SPARC vacuum
interspaces and double seals

2. Secondary tritium containment

• Service Pumping System (SPMP):
Mobile pumping carts for SPARC
auxiliary systems requiring rough or
high vacuum

• Torus Pumping System (TPMP):

1. Maintain torus base pressure and pressure between plasma pulses

2. Neutral particle (He “ash”) control through divertor region pumping

3. Primary tritium containment

[3]
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• Plasma operations
• One “pulse” every 20 minutes

• Ramp up in ~9 s to maximum current

• Flattop for 10 s, achieving maximum Pfusion

• Ramp down in ~10 s

• Transient & high strength magnetic field
• Magnetic field is ~0.5 T where VACP components begin

• Influences material and equipment choices

• Magnetic shielding = large electromagnetic forces and plasma perturbations

• Must avoid electrical loops

• Radiation
• High neutron fluence over the lifetime of SPARC

• Component damage, e.g., seals and electronics

• Undesirable heating of components, e.g., cryopump stages

• Primary and secondary tritium boundaries

• Design & fabrication for vacuum – many systems and components in vacuum

Some Challenges

Adapted from [2]
CL
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Cryostat Pumping 
System (CPMP)
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• Cryostat
• Large vessel, do ≈ 9.2 m, h ≈ 9 m

• 316/316L stainless steel fabrication

• Thermal shields
• GHe-cooled

• 316/316L stainless steel fabrication

• Silver plated to minimize emissivity

• MLI to enhance thermal radiation protection

• HTS and copper magnets
• Most LHe-cooled, some others conduction-cooled

• In-vessel magnet supports

• Power feed lines for magnets
• Use of non-metallics, e.g., in-situ cable joints

• Vacuum vessel (VV) – details in coming slides

• Boron carbide (B4C) neutron shielding

• Lots of additional hardware, e.g., bolts, brackets, thermal/electrical insulation

What’s in Cryostat Vacuum?
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• Two parallel pumping trains: DN540 → DN200→ DN100 (roughing line & TMP backing line)

• Discharges to stack, but can be directed to trace tritium recovery (TTR) system

• Radiation-compatible vacuum gauges and RGA

CPMP Layout

Cryostat

2x Cryopumps
DN350CF

4x TMPs
DN200CF

2x
Screw Pumps
DN100CF
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• No in-situ bake-out of CPMP or other in-
vacuum components

• All-metal sealed – CF flanges with 
copper gaskets, including rough vacuum 
section

• Vacuum volume, V ≈ 312 m3

• Internal component surface area
≈ 3500 m2

• Calculated with VacTran
• Base pressure of 1.3E-3 Pa reached after 

370 hrs (16 days)

• Permits cool-down of magnets and 
structures

CPMP Pump-Down
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Leak Detection
System (LKDT)
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• Rough vacuum pump-down (~100 Pa) and monitoring of vacuum “clients”

• Two parallel pumping lines: DN63 → DN200 → DN100

• Discharges to TTR system or stack

• Radiation-compatible vacuum gauges and RGA

Briefly on LKDT

2x
Screw Pumps
DN63CF
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Torus Pumping 
System (TPMP)
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• Vacuum vessel: di ≈ 2.3 m, do ≈ 5.7 m, h ≈ 3.5 m
• Double-walled to permit gaseous heating and cooling

• Primarily XM-19 (Nitronic 50) fabrication

• Ports and port plugs
• Essentially large vacuum feedthroughs to the vacuum

vessel for RF plasma heating, fueling, diagnostics, etc.

• Plasma facing components (PFCs)
• Composed of many tungsten alloy tiles

• Heat fluxes up to 200 MW/m2 in divertor

• Plasma disruptions = flash heating possible

• “Boronization” as oxygen getter and impurity trap [5]

• Fuel injection (helium, hydrogen, deuterium, tritium, etc.)

• Boron carbide (B4C) neutron shielding – also reduces
vacuum conductance in ports

• Lots of additional hardware

What’s in Torus Vacuum?
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• Two parallel pumping trains: DN540 → DN200→ DN100 (roughing line & TMP backing line)

• At low tritium concentrations, VV pumping (VVP) discharges to TTR system

• Divertor neutral pumping system (DNP) regenerates into the VV, and gas is directed to torus exhaust purification (TEP) 
system via VVP – higher content of tritium anticipated

• Radiation-compatible vacuum gauges and RGA

TPMP Layout

8x 
DNP Cryopumps

DN350CF

4x TMPs
DN200CF

2x
Screw Pumps
DN63CF

2x
VVP Cryopumps
DN350CF

Vacuum Vessel
(not shown)
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• TPMP is not baked, but the vacuum vessel is conditioned:
• To recover adsorbed fuel and remove impurities at the

beginning and end of campaigns:

• “High temperature” bake to 350°C

• Glow discharge cleaning

• More frequent vessel condition during campaigns:

• “Low temperature” bake to 150°C 

• Ion cyclotron discharge cleaning via intentionally
poorly confined plasma

• All-metal sealed, double-walled components
(electrical breaks, bellows), tritium-compatible

• Vacuum volume, V ≈ 70 m3

• Internal component surface area ≈ 1500 m2

• Calculated with VacTran
• Base pressure of 5E-6 Pa reached after 825 hrs (~35 days)

• *Not including cryopumps or vacuum vessel bake-out*

• Inter-pulse pressure of 1E-4 Pa reached after 12 minutes

TPMP Pump-Down



4/15/2024 21COPYRIGHT

• What is a divertor?

1. Primary exhaust for heat and ash produced by the fusion reaction

2. Protects surrounding walls from thermal loads

3. Minimizes plasma contamination [6]

• QTY 8 “toroidally symmetric” pumps in divertor region

• Pumped via custom cryopumps

• Closed-loop, refrigerator-cooled

• Tritium compatible

• Halogen-free and radiation-resistant charcoal binder

• Added thermal mass on second stage for increased throughput

• Transient operation due to nature of plasma pulses

• Effective pumping speed analyzed using transitional flow capabilities of 
COMSOL, with B4C shielding geometry accounted for

• Variable conductance vacuum valve allows:

1. Neutral gas pressure control within the divertor

2. Fast-actuated closure during disruption mitigation events (~100 ms)

Divertor Neutral Pumping

Divertor

Pumping
Duct
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• CPMP & TPMP require ~50 m total of large bore piping, D ≈ 540 mm

• Flange seals must be suitable for UHV and radiation environment
• Double spring-energized metal seals with interspace pumping or a CF gasket

• Calculations completed and prototyping efforts underway for a large rotatable and non-
rotatable CF-style knife-edge flange

• Documented use of similar sizes at CERN and GSI FAIR

• Custom large bore, two-ply electrical breaks and bellows also required for TPMP

Large Bore Piping to Maximize Vacuum Conductance
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Thank you!



4/15/2024 24COPYRIGHT

1. R. F. Vieira et al., "Design, Fabrication, and Assembly of the SPARC Toroidal Field Model Coil," in IEEE 
Transactions on Applied Superconductivity, vol. 34, no. 2, pp. 1-15, March 2024, Art no. 0600615, doi: 
10.1109/TASC.2024.3356571

2. A. J. Creely et al., “Overview of the SPARC tokamak,” Journal of Plasma Physics, vol. 86, no. 5, p. 
865860502, 2020. doi:10.1017/S0022377820001257

3. Wikipedia, "Deuterium-tritium fusion," 09 February 2024. [Online]. Available: 
https://en.wikipedia.org/wiki/Deuterium%E2%80%93tritium_fusion.

4. A. J. Creely et al., “SPARC as a platform to advance tokamak science,” Physics of Plasmas, vol. 30, no. 9, 
Sep. 2023, doi:10.1063/5.0162457

5. ITER, “Wall conditioning - a coat of boron to capture impurities, ” 16 October 2024. [Online]. Available: 
https://www.iter.org/newsline/-/3948

6. ITER, “Divertor”, [Online]. Available: https://www.iter.org/mach/Divertor
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