

Vacuum Performance of the Prototype Chamber for the Korea-4GSR

Sehyun Kim

Vacuum & RF Team **Pohang Accelerator Laboratory (PAL) POSTECH**, Korea

OLAV-VI | 17 April 2024 | Fermi National Accelerator Laboratory

- ✤ Introduction
- Proto-type chamber
- **Outgassing rate : Aluminum extrusion chambers**
- Pumping speed : Pill type getter
- ✤ Ultimate pressure
- **Summary**

OLAV-VI | 17 April 2024 | Fermi National Accelerator Laboratory

Distributed pumping using NEG coating

Vincent Le Roux., (2020)

Main Pump
g : d= 20 mm 00, Silver-bearing 0.085%)
g : d= 20 mm 00, Silver-bearing 0.085%)
g: d= 10 mm bearing 0.12 %) for chambers/absorbers
g: d= 6 mm, Insertion device chamber
g (columnar structure)
g
g
g: d= 22 mm, Insertion device chamber
g : d= 22 mm
g
chamber + lumped pump g chamber (2 chambers)

Aluminum extruded chamber + Pill NEG

* OFS (Ag 0.085~0.12%): substantial strength and high resistance to softening due to elevated temperature

Distributed pumping [PLS-II Storage ring]

Traditional

With Pill NEG

Х

0

0

No.1 No.2

No.3

400

350

350

1.5

16

24

150

180

300

4

48

48

48

6.7E-11

5.0E-11

3.9E-11

2.5E-10

5.1E-11

1.8E-11

Cell No. 10 SS MPW10

Long Straight section

Korea-4GSR: 1 cell layout of Storage Ring

7

Vacuum system requirements (Ch 12)

- Ultimate pressure : < 5×10⁻¹⁰ mbar (After Bake-out and NEG activation)
- Aluminum extruded material: A6063
- Heat treatment condition of extruded material: T5
- Internal surface roughness : < Ra 0.5 μm (After chemical polishing)
- Chamber dimension: 24(H) x 18(V) x 3425(L) mm, octagonal cross-section
- Flatness of extruded material: < 0.5 mm/total length (After Stretching)
- Curvature tolerance of vacuum chamber: ± 0.5 mm
- Material of aluminum flange: A2219-T87/T851 or A6061-T651
- Coating of aluminum flange: TiC (2~3 μm)
- Vacuum pumps: Distributed Pill-type NEG pump + Sputter ion pump

Vacuum chamber cross-section

Vacuum system requirements (Ch 12)

- Heating method : In-situ bake-out using a sheath heater
 - d= 4.5 mm (2 core), 1140W Bakeout & NEG activation Temperature : 180 °C
- Cooing method: Manufactured through aluminum extrusion

(without installing a outboard water cooling channel)

Cross-section of the SR vacuum chamber

Aluminum chamber extrusion process

Stretching

Chamber cutting

Transfer - Bending - T5 heat treatment

Dipole agnet chamber (Extruded Type, CH12) Al6063 T5 (185°C, 5h)

Extruded chamber bending

Curvature Test: Primary Banding Inspection in the Field Using Templates •

Extruded chamber bending

• Curvature Test : CMM [Coordinate Measuring Machine] - 3D contour measurement

ent Z-direction

Proto-type Chamber Machining

Aluminum vacuum chamber cleaning

X In the case of extrusion type, two additional processes are required in the oxide removal process to clean the inside of the chamber.

- Tilt the chamber to prevent the formation of an internal air layer due to cavitation phenomenon.

- Create a flow with an acid-resistant pump to allow all reagents to flow inside.

(d) pH check

Bake out 130 °C

Pill NEG insertion & Welding

TiC coated flange

Ver. 3..

900 Pill-type getters were inserted into the interior wall slits of a 3m long aluminum extrusion chamber

Welding X He leak rate < 10⁻¹⁰ mbar l/s

Assemble & alignment

OLAV-VI | 17 April 2024 | Fermi National Accelerator Laboratory

Proto-type chamber & Supporter assemble

OLAV-VI | 17 April 2024 | Fermi National Accelerator Laboratory

Chamber Displacement

Displacement of the Arc-section Before and After Bake-out

- Bake-out @ 150 ℃

- Measurement instrument: Dial gauge (Resolution: 0.01 mm)

														l	Init : mm
Ро	int	ARC14	ARC13	ARC12	ARC11	ARC10	ARC9	ARC8	ARC7	ARC6	ARC5	ARC4	ARC3	ARC2	ARC1
Before	dR	-0.16	-0.13	-0.27	-0.27	-0.25	-0.27	-0.18	-0.19	-0.09	-0.10	0.03	0.05	0.27	0.27
	Average		-0.14		-0.27		-0.26		-0.18		-0.09		0.04		0.27
After	dR	-0.12	-0.16	-0.30	-0.32	-0.30	-0.32	-0.22	-0.25	-0.13	-0.14	0.01	0.00	0.21	0.19
	Average		-0.14		-0.31		-0.31		-0.23		-0.13		0.00		0.20
Dev.	dR	0.03	-0.03	-0.03	-0.05	-0.05	-0.06	-0.04	-0.06	-0.05	-0.04	-0.02	-0.05	-0.07	-0.08
	Average		0.00		-0.04		-0.05		-0.05		-0.04		-0.04		-0.07

Thermal Outgassing rate of the aluminum extruded chamber

Aluminum Extrusion Chamber Vacuum Characteristics

- Outgassing rate & partial pressure to extrusion condition

Extrusion Condition	q (mbar l/s·ເm²)
Air	1.9e-13
N ₂	1.6e-13
O ₂ 10 % + Ar	8.0e-14

Pumping speed of the pill-type getters

Photon stimulated gas desorption (PSD)

✓ Residual gases in beam pipes during beam operation mainly come from the PSD.

Oleg B. Malyshev, Vacuum in Particle Accelerators (2020)

Total photon numbers

 $\dot{N}_{ph,I_e} = \frac{15\sqrt{3\pi}}{4} \ C_{\psi}I_eE_e$ $= 8.08 \times 10^{20} I[A]E_e[GeV] [photons/s]$ $I = 400 \text{ mA}, E_e = 4 \text{ GeV}$ $= 1.29 \times 10^{21}$ [photons/s] $\dot{N}_{ph,I_e,line} = \dot{N}_{ph,I_e}/C$ C=798.84 m $= 1.65 \times 10^{18}$ [photons/s/m]

Estimation of gas load

 $\dot{N}_{ph,I_e,line} = 1.65 \times 10^{18}$ [photons/s/m] if h=1×10⁻⁶[molecules/photon] $\dot{N}_{mol,I_e,line} = 1.65 \times 10^{12} \text{ [molecules/s/m]}$ $\dot{Q}_{av,line} = \dot{N}_{ph,l_e,line} \times k_{\rm B}T$ $= 1.65 \times 10^{12} \times 1.38 \times 10^{-23} \times 298$ $= 6.79 \times 10^{-9}$ Pa m³ s⁻¹m⁻¹ $= 6.79 \times 10^{-8}$ mbar l s⁻¹m⁻¹ $\dot{Q}_{av,line} = P_{av}S_{av,line}$ if $P_{av} = 1 \times 10^{-9}$ mbar

Pumping speed

St2002 Pill (Saes getters)

ZAO (Saes getters)

SIP

Pumping speed of the pill-type getters

✓ Throughput method

$$\mathbf{Q}=\boldsymbol{C}\left(\boldsymbol{P}_{1}-\boldsymbol{P}_{2}\right)=\boldsymbol{P}_{2}\,\boldsymbol{S}$$

$$\mathbf{S} = C \left(\frac{P_1}{P_2} - 1 \right)$$

Pumping speed of NEG pills

* ST2002: Zr (70%) - V (15%) - Fe (3%) – Mn (9%) – Rare earth (3%)

Comparison of initial pumping speed Soper An and initial apparent sticking probability and obtained in this study with those obtained in previous studies [14,19,25–27].

1 ³ /s)/m ²]	αο		Test method				
	H ₂	СО					
	0.011	0.18	ASTM method				
	0.009	100	ASTM method				
	0.011	0.026	Throughput method with test dome				
	0.029	122	ASTM method				
	0.017		Throughput method with test dome (Fischer-Morrimsen dome)				
	0.038	0.28					
	0.023	0.28					
	0.034	0.28					
	0.045	0.38					
	0.009		Throughput method with test dome				
	0.030	0.21	ASTM method				

Pumping speed of Pill-type getters after ultrasonic cleaning (IPA)

초음파시간	초기게터	후기게터	결손값	초기필터	후기필터	추출값
1	1.191			0.0717	0.0752	0.0035
2				0.071	0.0729	0.0019
3				0.071	0.0715	0.0005
4				0.0715	0.0716	0.0001
5		1.1822	0.0088	0.0713	0.0714	0.0001
						0.0061

Ultrasonic with IPA 2 min

- Pumping speed has decreased by 30 % of H₂
- Pumping speed has decreased by 50 % of CO

Ultimate Pressure

- BO & NEG Act. : 180 °C 48 h
- Sheath heater : 2 ea
- Extractor gauge : 3 ea

Summary

- We fabricated a prototype vacuum chamber for the Korea-4GSR Storage Ring and evaluated its vacuum \bullet characteristics.
- The thermal outgassing rate of the aluminum extruded chamber was measured using the rate-of-pressure rise method after 150°C, 48h bake-out is approximately 2×10⁻¹³ mbar l/s cm².
- We measured the pumping speed of the pill-type getters before assembling them into the chamber.
- Pumping speed of Pill-type getters after ultrasonic cleaning to reduce particles were also measured.
- We measured and evaluated the ultimate pressure of the Korea-4GSR Storage Ring prototype vacuum chamber.

OLAV-VI | 17 April 2024 | Fermi National Accelerator Laboratory

Many thanks for your attention

