Operational Experience from PETRA III ...and NEG-related Tests for PETRA IV

<u>N. Plambeck</u>, L. Lilje, R. Böspflug Deutsches Elektronen-Synchrotron DESY Machine Vacuum Systems (MVS)

OLAV VI (Fermilab), April 15 - 19, 2024

Outline

01 Overview of PETRA III

02 Availability

03 Failures

04 Modifications and Tests

05 NEG-related Tests for PETRA IV

06 Conclusions and Future Plans

11100

THE LOOP LOOP

Overview of PETRA III

DESY II

PIA

LINAC II

RF cavities

PETBA III

GeV Beam energy 6 Circumference 2304 m Beam current 100 / 120 mA Nr. of bunches 960 / 480 / 40 H / V emittance 1200 / 12 pm rad Lifetime 13/10/1 h BM crit. energy <20.9 (new) keV

211110

old arcs (3/4 of ring) bending radius 192 m magnet length 5.38 m crit. energy 2.5 keV

damping wiggler section

CONTRACTOR DE LA CONTRACTÓRIA DE

THE WITH THE PARTY OF THE PARTY

new arcs (experiments)

https://photon-science.desy.de/facilities/petra_iii/index_eng.html

Overview of PETRA III

Historical Sketch

- 1978 1986 electron positron collider
 - 1979 Gluon was found!
- 1989 2007 Pre-accelerator for HERA
- 2007 2008 Conversion into a synchrotron light facility
 - Max-von-Laue hall was built in the east (beamlines P1 to P14)
- 2009 2012 e⁺ operation
 - Mitigate operational instabalities due to dust
- Since 2013 e⁻ operation
 - Regular user operation
- 2014 2015 Extension north and east
 - Paul Ewald and Ada Yonath hall were built (beamlines P21-P25 and P61-P65)
- 2021 "Superlumi" beamline added (P66)

NE

LINAC II

SE

Ε

Overview of PETRA III

Beamlines

• 25 beamlines available...

P01 Dynamics	5 m
P02.1 Powder Diffraction and Total Scattering Beamline	5 m
P02.2 Extreme Conditions Beamline	2 m
P03 MiNaXS	2 m
P04 XUV Beamline	APPI
P05 Imaging Beamline	2 m
P06 Hard X-Ray Micro/Nano-Probe	2 m
P07 High Energy Materials Science	in-va
P08 High Resolution Diffraction	2 m
P09 Resonant Diffraction / HiPhaX	2 m
P10 Coherence Applications	5 m
P11 High-throughput MX	2 m
P12 BioSAXS	2 m
P13 Macromolecular Crystallography I	2 m
P14 Macromolecular Crystallography II	2 m
P21 Swedish Materials Science	2 m
P22 HAXPES	in-va
P23 In situ X-ray Diffraction and Imaging	2 m
P24 Chemical Crystallography	2 m
P25 Medical Imaging, Powder Diffraction and Innovation	2 m
P61 High Energy wiggler beamline/LVP	DW
P62 SAXSMAT	2 m
P63 OperandoCat (under construction)	
P64 Advanced XAFS	2 m
P65 Applied XAFS	2 m
P66 Superlumi	BM

DESY. | Operational Experience from PETRA III | Nils Plambeck (DESY) | 04/18/2024

•

Availability

Overview 2014-2024

- Since 2018 power glitches have an increasing impact on the availability
 - >60 h MTBF goal is achieved if power glitches are neglected
- 10 vacuum failures during user operation since 2014
 - Few major events with >2 h downtime in 2016 and 2023

Availability Overview 2014-2024

• List of vacuum failures...

Date Duration		Failure Description			
2013 KW32	00:43:06	2 SIPs with cable defects (radiation damage)			
2013 KW41	01:46:16	vacuum sensor defect			
2016 KW21	00:49:00	SIP power supply defect			
2016 KW24	00:23:00	SIP cable defect			
2016 KW27	11:14:00	leaks at the quartz window in diagnosis beamline and the bellow of a beam trap			
2017 KW41	00:44:00	SIP power supply defect			
2017 KW47	00:19:00	SIP power supply defect			
2018 KW19	01:35:00	Shutter interlock in damping wiggler section			
2019 KW37	00:23:00	SIP interlock in diagnosis beamline			
2022 KW23	01:34:00	pump cart in diagnosis beamline			
2022 KW25	01:09:00	pump cart in diagnosis beamline defect			
2023 KW43	03:16:00	leak at beampipe water cooling channel			

Date	Other Events Description		
2016 KW38	leak at beam stop bellow (\rightarrow planned vent)		
2018 KW10	missteering causing a leak at undulator flange connection due to warmup (\rightarrow planned vent)		
2018 KW13	accidental vent due to ripped ceramic insulation at current monitor		
2023 KW11	missteering causing a leak at undulator flange connection due to warmup (no vent necessary)		
2023 KW28	leak at extractor gauge feedthrough (\rightarrow planned vent)		

DESY. | Operational Experience from PETRA III | Nils Plambeck (DESY) | 04/18/2024

Quartz window in diagnosis beamline and beam trap bellows (2016 KW27+KW38)

- Two major leaks >10⁻⁶ mbar l/s occurred simultaneously (unrelated)
 - 1) DN40 quartz window leak at the metal-glas joint, no visible damage, installed few weeks earlier
 - 2) During the intervention an unusual pressure history observed in another sector (leaky bellow at beam trap)
- \Rightarrow Two sectors had to be vented and parts replaced
- Another beam stop had to be replaced 11 weeks later
 - Similar problem:
 bellow again leaky!
 (>4x 10⁻⁶ mbar l/s)

Ripped ceramic insulation at current monitor (2018 KW13)

- Brazed ceramic-metal joint at current monitor ripped apart probably because of warmup during operation
 - Monitor was not used anymore, risk factor left in the machine!
 - No/insufficient temperature monitoring
 - Installed close to experimental area / beamlines
 - Three adjacent sectors affected, 7 vacuum sections vented to 1000 mbar
- Replayced by simple dummy pipe
- Other unused parts were removed as well, e.g. two spare kickers

Water-leak at beam pipe cooling channel (2023 KW43)

- Water leak spontaneously occurred at cooling pipe due to erosion
 - Probably caused by too strong bending of inlet/outlet in 2009!
- \Rightarrow New cooling pipe clamped on the existing beam pipe
- Additional survey for wrong bending at water inlets was done
 - \Rightarrow No other locations found

Undulator flange warmup (2023 KW11)

- High currents during setup and missteering led to warmup of undulator flange connection; BPM interlock improperly set.
 - Beam losses at the flange indicated by light activation
 - Large leak temporarily fixed by further tightening the nuts
- \Rightarrow During design phase consider as many orbits as possible

Interlocks from SIP failures

- Repeated shutter interlock events until 2018
- ⇒ Updated valve interlock to mitigate influence from individual SIP failures, thus increasing redundancy
- Interlock happens if...
 - *before* Average pressure of sector exceeds 5x10⁻⁷ mbar
 - *after* 2 pumps per sector have to exceed 5x10⁻⁷ mbar
- ⇒ Significantly less interlocks since 2018!

	Date	Duration	Failure Description
>	2013 KW32	00:43:06	2 SIPs with cable defects (radiation damage)
	2013 KW41	01:46:16	vacuum sensor defect
>	2016 KW21	00:49:00	SIP power supply defect
\geq	2016 KW24	00:23:00	SIP cable defect
	2016 KW27	11:14:00	leaks at the quartz window in diagnosis beamline and the bellow of a beam trap
>	2017 KW41	00:44:00	SIP power supply defect
>	2017 KW47	00:19:00	SIP power supply defect
	2018 KW19	01:35:00	Shutter interlock in damping wiggler section
	2019 KW37	00:23:00	SIP interlock in diagnosis beamline
	2022 KW23	01:34:00	pump cart in diagnosis beamline
	2022 KW25	01:09:00	pump cart in diagnosis beamline defect
	2023 KW43	03:16:00	leak at beampipe water cooling channel

Pump cart in diagnosis beamline

- Repeated failures of a pump cart within diagnosis beamline in 2022 (inside tunnel) that led to individual interlocks (~5 times in 2 weeks)
 - Probably due to some electronics issue
 - PLC was changed in the process without success
 - Radiation background in the vicinity only few Gy within 74 Ah of operation, probably not the cause
- Used for pumping a rotational stage feedthrough, no HV needed!
- \Rightarrow Pump cart replaced by a pair of scroll pumps (1 for redundancy)

Cable defects due to synchrotron radiation

- Very high synchrotron radiation loads especially within wiggler sections
 - Estimated dose up to 2 MGy/year e.g. on the surface of the last absorber of the damping wiggler section
- Cable insulation is falling apart, even at larger distances (ground)
 - Scattered photons are filling the tunnel during operation!
- Soldered cable joints at Pt-100 temperature sensors coming off, probably due to irradiation
 - Predominanty occurs at high radiation area
 - A dedicated cable strain relief would help!

Modifications

"Superlumi" beamline (2021)

- New beamline added (P66) in the northeast
 - VUV luminescence spectroscopy
 - Photon-stimulated desorption
 - Time-resolved spectroscopy
- Synchrotron radiation from bending magnet

Modifications

PETRA IV HOM damped cavity (2023)

 A preliminary HOM damped cavity for PETRA IV developed by MHF-e was installed within the PETRA III with help of MVS

References

M. Ebert, "Proposal of an RF-System for PETRA IV", Technical note, DOI 10.3204/PUBDB-2019-02036

Modifications

PETRA IV current monitor

- Current monitors for PETRA IV are developed by MDI and installed with help of MVS
- First installed current monitor resulted in air leak shortly after commissioning due to flange warmup
 - Replacement during regular maintenance
- New versions are first tested at MVS by performing warmup cycles

Overview of PETRA IV

- Hybrid 6-bend achromat (H6BA) lattice
 - 72 arc cells
 - 32 beamlines (3 canted undulator cells)
 - ~40 distributed damping wigglers
 - 4 "short" and 4 "long" straight sections
- Several existing beamlines and IDs to be reused
- Additional beamlines in new extension hall west
- Currently in TDR phase
- A prototype girder is being set up

Overview of PETRA IV

- PETRA IV will replace PETRA III in the existing tunnel
- Very little space for bellows, flange connections and additional pumps

DESY. | Operational Experience from PETRA III | Nils Plambeck (DESY) | 04/18/2024

Overview of PETRA IV

- Within arcs ~90 % of the vacuum system will be NEG coated
 - Simple 20 mm round beampipe profile, 13x20 mm within high-gradient quads and 7x20 mm within ID
 - One-sided shadowing bumps to protect BPMs and bellows from irradiation
 - Pump stages at transition to uncoated straight sections
- NEG characterization ongoing for in-house fabricated samples with different compositions and morphologies
 - Pumping speed and capacity
 - Electron-stimulated desorption
 - Resistivity
 - Thickness profile

Partial NEG coating in PETRA III arcs

- 12 partially TiZrV coated dipole chambers, various gauges and an RGA installed end of 2018
 - Total length of the sector ~94 m
 - >55 % of total flux >7 eV absorbed within coating and
 <2 % on NEG strip within antechamber
- Setup not ideal / tradeoff: ~60 % of vacuum system not coated! (ensure regular operation vs. studying NEG characteristics)

NEG strip

sputter ion pump

TiZrV coating

Partial NEG coating in PETRA III arcs

- No initial bakeout, no in-situ NEG activation (coating or strip)
- Comparison of conditioning behavior between 2019 with inactive coating and NEG strip and 2009 without coating but (active) NEG strip and adjacent sector without NEG coating (Appendix)

⇒ Pressure rise 2019 similar to 2009 with active NEG strips!

- Reduction of PSD or additional pumping due to active NEG coating?
- No difference between "used" and "ununsed" chambers

References (plot):

6060 Al: M. Andritschky et al., CERN-LEP-VA-89-32 (1989) 6063 Al: S. Ueda et al., Vacuum, 41(7–9), 1928-1930 (1990) AlMgSi_{0.5}: A. G. Mathewson et al., CERN-AT-VA-90-10 (1990) SOLEIL: C. Herbeaux et al., Proc. EPAC08, 3696-3698 (2008)

Partial NEG coating in PETRA III arcs

- Data extensively analyzed via 1D pressure matrix calculations using VACLINE/CALCVAC
 - \Rightarrow Relate PSD to NEG sticking factor and SIP pumping speed
 - ⇒ Recorded pressures seem to be overestimated (also indicated by adjacent sector)
- Additional tests performed with successive...
 - A. Switch-off of SIPs around RGAs during shutdown
 - B. Switch-off of SIPs around RGAs during operation
 - C. Increase of beam current with SIPs switched off

⇒ No clear indication of additional NEG sticking probability!

Partial NEG coating in PETRA III arcs

- **But:** A small difference is indicated if the beam is operated, especially for methane (fragments)
 - For methane tests with increasing beam current in 2020 indicate sticking factors of 3...7x10⁻⁷ per mA assuming that
 - outgassing is constant $q(I) = q_0$
 - sticking linearly increases with current $sf(I) = sf_0 + \sigma \cdot I$
 - However, as the methane pumping mechanism was not understood enough data analysis was finally stopped

⇒ No clear indication of persistent additional NEG sticking probability!

Synchrotron radiation induced damage

- Various equipment currently tested at high-load synchrotron radiation absorbers at PETRA III damping wiggler section, e.g.
 - Thin-foil heaters with integrated temperature sensors (polyimide, 0.2 mm)
 - Titanium-sublimation pump power supplies
 - Epoxy based thermal bond...
- Radiation dose was measured via TLD-800 thermoluminescence dosimeters (maximum dose per measurement ~25 kGy)
- Very high doses >100 kGy per month of regular operation at absorber surface
- ✓ Foil heaters without failure up to now (> 2 MGy)

Conclusions...

... and future plans

- PETRA III availability > 97 % since years with MTBF > 50 h, improvement possible
 - Power glitches play a major role on availability next to power supplies and RF
- Very few (severe) vacuum issues since 2015 prove the system rigidity
- Beam-induced activation of partly NEG coated sectors in 2018 is not clearly measurable
 - Fraction of uncoated areas may be too high
 - During operation additional pumping is slightly indicated

Future plans

- Extended operation until end of 2029 at least \rightarrow refurbishment of hardware will be required
 - Replacement of ion pump power supplies, gauge controllers, cables... especially within pre-accelerator chain
- Further progress of the PETRA IV project including mockup

Thank you!

Contact

Deutsches Elektronen-Synchrotron DESY

www.desy.de

Nils Plambeck MVS nils.plambeck@desy.de +49 40 8998 93024

Appendix

Partial NEG coating in PETRA III arcs

- 12 partially TiZrV coated dipole chambers installed end of 2018
 - Total length of the sector ~94 m
 - ~70 % of total flux >7 eV absorbed within coating and <0.5 % on NEG strip within antechamber
 - Setup not ideal / tradeoff: ~60 % of the vacuum system not coated! (ensure regular operation vs. studying NEG characteristics)
- No prior bakeout, no in-situ NEG activation (coating or strip)
- Pressure rise 2019 with inactive coating and NEG strip similar to 2009 without coating but active NEG strip

PIII WR 2009 PIII WR 2019

6060 A 6063 A

AIMgSi_{0.5} SOLEIL (NEG)

 10^{24}

Partial NEG coating in PETRA III arcs: PSD estimates

- Similar conditioning behavior of adjacent sectors apart from offset (factor ~2.5)
- Photon-stimulated desorption (PSD) may be estimated from
 - a) time until saturation after NEG strip regeneration [1]

 $\Rightarrow \eta_{3 \text{ Ah},2009} \approx 3.3 \cdot 10^{-4}$

- $\Rightarrow \eta_{3 \text{ Ah},2019} \approx 5 \cdot 10^{-5}$ (one chamber accidently activated after 70 Ah)
- b) total pressure rise [2]
 - $\Rightarrow \eta_{3 \text{ Ah},2009} \approx 7.5 \cdot 10^{-4}$
 - $\Rightarrow \eta_{3\,\mathrm{Ah},2019} \approx 1.1\cdot 10^{-4}$

Assumptions:

- NEG strip saturation by 0.7 mbar l/m (e.g. between 3 and 12 Ah)
- Conditioning slope -0.92 in 2009 and -0.72 in 2019
- SIP pumping speed 30 l/s and 2.7 m separation
- \Rightarrow Significantly less PSD or additional pumping due to NEG coating

Conditioning after vent with N₂ beginning of 2020

- Adjacent sectors vented to 100 mbar for 30 min with N₂ in 2020
 - NEG strips in NWL previously activated to some degree
 - NEG coating in WR without clear indication of activation
- Very low pressures after re-comissioning
 - Physical error sources have an increasing impact (e.g. outgassing from RGA and SIP; change of bunch pattern...)
- For adjusted pressures in WR (factor 2.5) conditioning curves are initially in-line
- For the NEG coated sector sf<<10⁻⁴ similar to 2019
- Significantly higher sf indicated in NWL (NEG strip)
 - $7x10^{-4} < sf < 3x10^{-3}$
 - sf>4x10⁻³ unlikely because corresponding PSD too high
 - \Rightarrow Probably NEG strips were partially regenerated under UHV conditions

Successive switch-off of SIPs during shutdown (or operation)

- For each step $\frac{p_{on}}{p_{off}-p_{on}}$ where SIP on/off corresponds to SIP at RGA •
 - Time intervall of 2 or 5 min between each switch-off (and on)
 - Several measurement rows in order to enable calculation of average and error as well as potentially observe systematic variations
- Measured pressure ratios are fitted against simulations and/or • analytical formulas

Analytical model:

$$q - s \cdot p(x) + c \cdot \frac{d^2 p(x)}{dx^2} = 0 \text{ with } p'\left(\frac{L}{2}\right) = 0 \text{ and } -c \cdot p'(0) = p(0) \cdot S_{SIP}$$
$$\Rightarrow p = \frac{q}{s} \cdot \left(1 - \frac{\cosh\left(\sqrt{\frac{s}{c}} \cdot \left(x - \frac{L}{2}\right)\right)}{\frac{\sqrt{s \cdot c}}{S_{SIP}} \cdot \sinh\left(\sqrt{\frac{s}{c}} \frac{L}{2}\right) + \cosh\left(\sqrt{\frac{s}{c}} \frac{L}{2}\right)}\right)$$
$$\Rightarrow p(s = 0) = \frac{q L}{2 S_{SIP}} + \frac{q L}{2c} x - \frac{q}{2c} x^2$$

Simulations:

Consider S-sf pairs for which Chi-square ratio X²/X²_{min}< 5 with $\chi_v^2 = \frac{\chi^2}{n-1} = \frac{1}{n-1} \sum \frac{(r_i - s_i)^2}{\Delta r_i^2}$, where "r" ist the ratio from measurement and "s" from simulation.

DESY. | Operational Experience from PETRA III | Nils Plambeck (DESY) | 04/18/2024

Expected synchrotron radiation distribution

- The photon distribution was simulated with SynRad+ in order to judge influence from scattered photons on • NEG strip and pressure reading
 - Total flux and power per dipole 1.8x10¹⁶ ph/s/mA and 2.7 W/mA
 - 2 % of photons and 0.1 % of power absorbed at NEG strips

 - <10⁻³ % of photons at SIPs/gauges

Assumptions:

• Reflectivity tables for $Ti_{0.25}Zr_{0.25}V_{0.5}$

Pumping Speed Measurements at DESY (MVS)

PETRA III dipole chamber

1) Test of standard dipole chamber with activated NEG-strip

initial sf of NEG-strip from p1/p2 from p3/p1 0.0036 - 0.0039 0.0087 - 0.0094 0.007 - 0.014 0.08 - 0.30

2) Test of dipole chamber with activated NEG-strip and without active -coating

3) Test of dipole chamber with activated NEG-strip and with active -coating

		H ₂	CO		
		w/o MS			
initial of	from p1/p2	0.0002 - 0.0003	0.0003 - 0.0005		
initial Si	from p3/p1	<0.0005	0.002 - 0.014		
of coating		w/ MS			
(on top of NEG-strip)	from p1/p2	0.0004 - 0.0006	>0.013		
	from p3/p1	<0.0005	0.003 - 0.015		

change of transmission factor with increasing saturation

NEG Coating: Development of Film Properties

Focus on TiZrV and Zr coated Copper tubes

- Test program includes several topics:
 - Comparison between dense and columnar NEG samples with both TiZrV and Zr prepared at DESY
 - Bent copper chambers (OFS-Cu):
 - Chambers of various lengths (1.5 2.5 m) and bend radii (32 104 m) needed for PETRA IV
 - Bending tests after deposition show no effect on coating morphology
 - Spacer design is being worked on for samples bent before deposition
 - New Cu-OFS profile with a side cooling channel has been delivered
- Preliminary results:
 - Pumping properties within expectations for columnar
 - Pure Zr lower capacity and sticking factor
- Resistivity:
 - 5.4 $\mu\Omega m$ for TiZrV, 8.5 $\mu\Omega m$ for Zr
 - Measured with thick (5 um) thick samples
 - Thin (1um) NEG layers nearly indistinguishable from bulk Cu

	TiZrV		Zr		
T _{act} (°C)	C _{CO} (CO/cm ²)	C _{co} (ML)	C _{CO} (CO/cm²)	C _{co} (ML)	
200	7.87×10 ¹⁸	1.57	2.16×10 ¹⁸	0.43	
220	9.73×10 ¹⁸	1.95	2.30×10 ¹⁸	0.46	
250	1.20×10 ¹⁹	2.40	5.07×10 ¹⁸	1.01	

NEG Coating

Resistivity measurements

- TiZrV: Estimated resistivity 5.4 μΩm, thin sample indistinguishable from bulk Cu
- Zr: Estimated resistivity 8.5 μΩm, thin sample marginally visible in the measurement

1.5

1.0

0.5

0.0

-0.5

-1.0

0.8

on (dB)

Atter

1.1

 $\times 10^{11}$

Cu

S3_5um

S4 1um

0.9

Frequency (Hz)

Fitted data - Zr

1.0

S3, 5um

1.1

 $\times 10^{11}$

PETRA IV Extration Chamber

Expected synchrotron radiation power loads

• Power loads from SynRad:

Position	Power [W]		
full absorber ch.	254		
abs. front and sides	252		
abs. front face	174		
post. beam pipe	400		
photon pipe	45.7 (45 on texture)		

- Textures used as input for ANSYS
- Consistent with 1D-calculation (175 W total on front face, max. 29.2 W/mm²)

absorber front view ring inside

PETRA IV Shadowing Bumps

Required bump heights

- Required bump heights reduced to ≤ 2.5 mm in revision 3 ٠
- Bump at BPM 6 and Corrector 4 split up into two • smaller bumps

Position	shadow length in mm	th. bump height in mm	tolerances in mm		req. bump height in mm	
			production	alignment	girder	
BPM 1		shadowed	d by increas	ed diamete	r	
Corrector 1	166.2	0.2	0.1	0.2		0.5
BPM 2		integrated into	photon ext	raction chai	mber	
BPM 3	204.0	1.6	0.1	0.2	0.5	2.5
Corrector 2	171.2	0.7	0.1	0.2		1.0
BPM 4	123.8	0.5	0.1	0.2		0.8
Corrector 3	183.5	2.1	0.1	0.2		2.5
BPM 5	209.2	1.7	0.1	0.2	0.5	2.5
BPM 6	54.1	0.5	0.1	0.2		0.8
Corrector 4	174.6	1.4	0.1	0.2		1.7
BPM7	197.8	0.7	0.1	0.2	0.5	1.6
BPM 8	55.0	0.5	0.1	0.2		0.9
Corrector 5	177.3	2.0	0.1	0.2		2.4
BPM 9	225.8	1.0	0.1	0.2	0.5	1.9

