Beam Monitoring in 3DST and ECAL+STT

Artem Chukanov, Bing Guo, Roberto Petti, Svetlana Vasina

SAND meeting 3^{rd} of March 2020

Part I: interpretation of χ^2

< □ > < □ > < □ > < □ > < □ > = Ξ

Histogram with spike

 χ^2 calculation:

$$\chi^2 = \frac{(obs - exp)^2}{exp}, \text{ (only stat)}$$

From the first point of view - there is no χ^2 sensitivity, but by eyes we can easily distinguish spike

A. Chukanov

Beam Monitoring

▲ ■ ▶ ■ つへで 03.03.2020 3 / 25

・ロト ・回ト ・ヨト ・ヨト

Let's include statistical fluctuations for the experimental data (Gaussian distribution around mean value). Mean value - 10.

Let's include statistical fluctuations for the experimental data (Gaussian distribution around mean value). Mean value - 100.

Let's include statistical fluctuations for the experimental data (Gaussian distribution around mean value). Mean value - 1000.

• • • • • • • • • • • • •

Let's include statistical fluctuations for the experimental data (Gaussian distribution around mean value). Mean value - 10000.

Summary for part I

- χ^2 functional is sensitive to any spikes that can be easily distinguished by eyes
- during statistical analysis it is necessary to take into account statistics and statistical errors (distribution), otherwise results can be interpreted in a wrong way

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Part II: Beam Monitoring in **3DST** with re-weighting

A. Chukanov

Beam Monitoring

→ ▲ 重 → 重 → Q へ へ 03.03.2020 9 / 25

Beam re-weighting for **3DST**

Initial data: Nominal beam spectra, Difference between nominal beam and variated beam - W (same W used by 3DST analysis provided by Guang)

Procedure:

- generate events for nominal beam H_{nom} (exact statistics expected in one week)
- making correction of H_{nom} by the weights W
- get re-weighted histogram for beam variation H_{var}
- get re-weighted histogram for muon distribution with smearing M_{var}
- calculate χ^2 between H_{nom} and H_{var} , M_{nom} and M_{var}

Histograms H_{nom} and H_{var} are self normalized

Used
$$\chi^2 = \frac{(H_{nom} - H_{var})^2}{H_{nom}}$$

A. Chukanov

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのの⊙

Beam re-weighting for variation of Horn Current

Beam energy weights (initial data)

Muon spectra weights (obtained)

• • • • • • • • • • • • •

Beam re-weighting for variation of Horn Current

Beam spectra

black - nominal, red - re-weighted

A. Chukanov

Beam Monitoring

03.03.2020 12 / 25

æ

Chi-square for variation of Horn Current

Beam spectra

Muon momentum

æ

Beam re-weighting for variation of Horn1 Y Shift

Beam energy weights (initial data)

Muon spectra weights (obtained)

• • • • • • • • • • • • •

Beam re-weighting for variation of Horn1 Y Shift

Beam spectra

Muon momentum

black - nominal, red - re-weighted

A. Chukanov

Beam Monitoring

03.03.2020 15 / 25

э

Chi-square for variation of Horn1 Y Shift

Beam spectra

Muon momentum

æ

Comparison of $\sqrt{\chi^2}$ distributions for Horn Current variations

Stat. Error and detector effect (smearing + efficiency applied)

Beam Monitoring

Comparison of $\sqrt{\chi^2}$ distributions for Horn1 Y Shift variations

Stat. Error and detector effect (smearing + efficiency applied)

Significance comparison - **3DST**

Significance = $\sqrt{\chi^2}$

Beam parameter	Variation	E_{ν}	E_{μ}	E_{μ} (3DST group)
Horn current	+3 kA	9.2	4.2	~ 10
Horn 1 along y	$0.5 \mathrm{mm}$	3	1.4	12.8

Beam monitoring is more sensitive to neutrino energy spectra than to the muon energy because of smearing according to the y_{Bj} distribution

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 ののの

Part III: Beam Monitoring in ECAL+STT

A. Chukanov

Beam Monitoring

(日) (四) (三) (三) 03.03.2020 20 / 25

æ

Events generation for ECAL+STT

- generated exactly one week of statistics for each sample: nominal, horn current, horn 1 shift Y
- used χ^2 :

$$\chi^2 = \frac{1}{N^{nom} \cdot N^{var}} \sum_{i=1}^k \frac{(N^{var} \cdot n_i^{nom} - N^{nom} \cdot n_i^{var})^2}{n_i^{nom} + n_i^{var}}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のQ@

Generated variations for ECAL+STT - Horn Current

blue - ratio between generated HC and nominal, green - weights histogram W

A. Chukanov

Beam Monitoring

03.03.2020 22 / 25

Generated variations for ECAL+STT - Horn1 Y shift

blue - ratio between generated HC and nominal, green - weights histogram W

A. Chukanov

Beam Monitoring

03.03.2020 23 / 25

Results

Beam parameter	STT E_{ν}	ECAL E_{ν}	STT E_{μ}	ECAL E_{μ}
Horn current	85/39	141/39	54/39	53/39
Horn 1 along y	46/39	70/39	31/39	43/39
$\mathrm{nominal}/2$	37/39	31 / 39	33/39	22/39

Beam Monitoring

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ 03.03.2020

24 / 25

Conclusion

- χ^2 functional is sensitive to any spikes that can be easily distinguished by eyes
- during statistical analysis it is necessary to take into account statistics and statistical errors (distribution), otherwise results can be interpreted in a wrong way
- our results for significance calculation is inconsistent with the 3DST group for Beam Monitoring for re-weighted data samples
- results (χ^2 distributions) for generated samples are differ from the re-weighted one
- neutrino energy spectrum is more sensitive to Beam Monitoring compared to muon energy because of y_{Bj} distribution
- ECAL+STT provides an excellent beam monitoring due to high mass and large transverse size

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの