Rejection of Rock Muon Background with ECAL

Bing Guo, Roberto Petti

March 16th, 2020

University of South Carolina

Analysis Framework

- This background study is focused on beam monitoring using Ecal
- ECAL+STT detector configuration as in docdb # 13262
- Signal: Ecal events in "Front Ecal FV"

• Front Ecal FV: Z<Z0, |x|<1.69m, |y|<2.0m

- Background: muons from CC interactions in surrounding rocks of ND hall
- Analysis chain: GENIE-> Edep-sim(Geant4)->reconstruction smearing from hits

Rock Events

Initial vertex distribution of simulated events

Rock events reconstructed in SAND

- Reconstructed muon in STT with N(Y) hit >=6 (YZ: bending plane) ,
- Reconstructed hits in FV of front ECAL with deposited energy in (active) cell >= 100 keV

Reconstruction and selection efficiency

- Events from the side and downstream rocks result in negligible background in front ECAL FV
- Background from rock muons almost entirely from rocks & materials in front of SAND
- Background reconstructed in STT and ECAL: 2%
- Signal reconstructed in STT and ECAL : 77%

Ecal timing

Earliest Hit:	Layer 0	Layer 1	Layer 2	Layer 3	Layer 4
Ecal events	33.4%	20.0%	17.2%	15.8%	13.6%
Rock muons	0.22%	0.20%	1.35%	9.81%	88.4%

(distribution normalized to same area, for illustration)

- Apply smearing according to average ECAL timing resolution sigma=260ps (to be improved with 54ps/sqrt(E) ⊕ 50ps)
- select the ECAL layer (out of 5) with the earliest detected signal

Strategy for event selection

- Select events with the earliest hit in layer == 4 (outermost plane)
- Study the energy depositions and cell topology in ECAL
- Choose various discriminating variables to be used as input of neural network
- Optimize the NN architecture, train and select cut
- Repeat all of the above steps for each of the remaining layers ==3,2,1,0

All distribution normalized to same area (for illustration)

Average of summed energy in layers

RMS of summed energy in layers

Energy depositions in layer 4

Energy Asymmetry in different layers

layer 4

Maximal energy depositions in layers

Neural Network results

- 8284 train and 8285 test entries, 8063 signal and 8506 background events.
- Events normalized to expected POT per spill : 7.5E13

Example Cut = 0.64 Signal eff: 90% Bkg eff: 3.3%

The final cut will be optimized

Samples normalized to expected POT per spill

- Repeat same procedures used for events with earliest hit in layer4
- Due to limited statistics available from simulated events, use the same NN trained in layer4
- To be optimized and improved with higher statistics in future

NN output

- Neural network result without retraining
- Distribution normalized to expected POT in one spill

Distribution normalized to expected POT in one spill

Example Cut: 0.43 Signal eff: 95% Bkg Eff: 5.3% FOM: 94.2

Events with Earliest hit in layer==2,1,0

- Repeat same procedures described before for each layer : 2,1,0
- Very limited statistics available at the moment, don't apply NN
- Will optimize in the future with enough statistics

Summary of event selection

Events Per spill (7.5E13POT)	Ecal events	signal efficiency	Rock events	bkg efficiency
No Cut	2.29	100%	1447.26	100%
Muon in ECAL FV	2.29	100%	11.51	0.795%
STT N(Y)>=6 & ECAL hits	1.78	77.5%	6.36	0.439%
NN cut	1.72	75.2%	0.25	0.017%

Final S/B=6.9

• Further improvements possible with optimization and increased simulated statistics

Rejection of Background from magnet

- Simulate CC events in the entire SAND magnet with GENIE + EdepSim(Geant4) + reconstruction smeared from hits
- Require a reconstructed muon in STT with N(Y)>=6 and hits in the front ECAL FV
- Apply exactly the same NN selection(same cuts without retraining) used to reject rock muons: no additional loss of signal efficiency
- Evaluate residual background from events in the SAND magnet and compare with rock muon background

NN for L4 & L3 with Rock muon NN training result

Summary of event selection

Event Per spill (7.5E13)	Ecal events	signal efficieny	Rock events	Rock efficiency	Magnet Events	Magnet efficiency
No Cut	2.29	100%	1447.26	100%	50.82	100%
Muon in ECAL FV	2.29	100%	11.51	0.795%	2.59	5.09%
STT N(Y)>=6 & ECAL hits	1.78	77.5%	6.36	0.439%	1.67	3.29%
NN cut	1.72	75.2%	0.25	0.017%	0.18	0.36%

- Further improvements possible with optimization and increased simulated statistics
- Same cuts rejecting rock muons also reject magnet events
- NN selection results in only 2% signal loss. A tighter cut (NN=0.85) on NN would give 3% signal loss with bkg reduction by a factor of 2

Summary

- Studied background from rock and magnet CC events with GENIE+EDEPSIM(GEANT4)+ reconstruction smearing from hits
- Method to separate rock and magnet events from genuine ECAL events developed using a combination of timing and topological information (NN) in ECAL
- Results indicate an efficient rejection of both rock muon and magnet backgrounds with minimal signal loss
- Implementation of active veto systems less critical

Backup

Magnet Events vertex distribution

Distributions normalized to expected pot per spill