

Notes on the design of the FAST proton LEBT

A. Shemyakin, J.–P. Carneiro 3 March 2020

Outline

- Beam specifications
- What is known about FAST/HINS proton source
- Possible versions of the FAST LEBT and comparison
- Result of reading papers, multiple discussions, and Jean-Paul's simulations

Beam parameters at the FAST proton line exit

• From A. Romanov's e-mail on March 2, 2020

Parameter	Nominal	Min	Max	Units
Energy	2.5	2.4	2.8	MeV
Current	5	1	10	mA
Pulse length	2	1	10*	μs
Repetition frequency	0.1	1/60	1	Hz
Transverse emittance, rms n, both	0.24**	0.1	0.3	μm
planes				
Energy spread, rms***	0.5	0.2	0.6	%

- * Might be better to increase to 50 µs
 - Boundary of low risk for thermal stress
- ** Noticeable lower than the worst scenario from the ion source
- *** Might be not very relevant for the LEBT/RFQ discussion since a bunching cavity is expected in MEBT

HINS results

- Most relevant details are in V. Scarpine's report
 - APC talk, 2011, https://indico.fnal.gov/event/4654/
 - Also in Tam's dissertation
 - LEBT
 - 40% p, 30% H2+, 30% H3+ (slide 10)
 - $\epsilon_rms_n \sim 0.5 \ \mu m @7 mA of p; dirty profiles (slide 11)$
 - Increases linear with current, 0.2 $\mu m @1.5 \ mA$
 - Larger than requirements for IOTA injection
 - MEBT
 - Maximum reported current of 11 mA; clean profiles;
 - $\epsilon_{ms_n} \sim 0.1 \ \mu m @6 \ mA$; nearly constant after ~10 μs
 - Slide 20: ϵ _rms_g ~ 1.5 μ m, β rel=0.073
 - Emittance (n) is by 5 times lower than measured in LEBT
 - May contradict to some later measurements

HINS duoplasmotron

- No reliable data on parameters at the ion source exit
 - HINS simulations were based on numbers found in papers of the end of 1980s
 - E.g. $\epsilon_{ms_n} = 0.47 \ \mu m @22 \ mA, \alpha = -3, \beta = 0.49 \ m$
- LINAC'00 paper for the same ion source: ~0.5 µm @92 mA
 <u>https://www.slac.stanford.edu/econf/C000821/TUD16.pdf</u>
 - (2.4 -3) π mm*mrad for 95% norm.; $\varepsilon_{95\%} = 6 \cdot \varepsilon_{rms}$

Proton source at FAST

- The same as at HINS: Ion Source, 1st solenoid, RFQ
 - An extraction electrode modulator is being added
- Completely different MEBT
- The LEBT may be different or similar
 - 2nd solenoid of a larger size
 - Additional elements might be added
- Reasons to thinks about deviation from HINS
 - IOTA needs only ~1 $\mu s.$ If a 0.3 ms pulse from IS is accelerated, to 2.5 MeV, it may create a thermal shock where it is lost
 - Not clear how short can be the RFQ pulse
 - A bend in LEBT would be a critical device and proton separator
 - Improving neutralization might be beneficial

Proton source at FAST: versions

- Three versions are being considered
 - "1": Mainly replicate the HINS LEBT
 - "2": more complicated line
 - + 30° bend
 - with a Faraday Cup to measure the Ion Source current
 - "3": even more complicated, "2" with
 - Chopper upstream of Sol2
 - Two EID (electrically isolated diaphragms)
 - One to separate areas with neutralization and without
 - One in front of the RFQ

• With replacement of Sol 2

- Chip's suggestion to install a bend
 - As a critical device
 - To remove early H2+, H3+

- Chopper to define the pulse length and EIDs to control neutralization, similar to PIP2IT LEBT
 - Design of the chopper and EID may be based on PIP2IT's

Simulation of Version 3

- J.-P. Carneiro, TRAC, 21-Feb-2020
 - Initial conditions are the same as P. Ostroumov used for HINS simulations
 - $\epsilon_{rms_n} = 0.47 \ \mu m$, I= 22 mA (the worst scenario)
 - For this longer LEBT, no solution for transport with full space charge
 - With upstream portion neutralized, the beam is still large

Rms envelope. J.-P. Carneiro, TRAC. The upstream portion (~65 cm) is with zero space charge, and 22 mA in the downstream portion. The initial distribution is Water Bag.

Version 3, partially neutralized

- Beam size is too large to have a chopper
 - No easy solution to make a chopper without significant scraping (U=10 kV, L=150 mm). Note that relative separation between envelops of the beam passed and beam removed is ~1/ ε_rms
- Difficult to pass through the existing dipole magnet (2" gap).
- No proper matching into the RFQ
 - 50% of the beam is lost at the entrance diaphragm (10 mm ID)
- Reasons for troubles:
 - Increased distance between RFQ and center of Sol 2
 - High space charge from 22 mA
 - Very high initial emittance
 - Unknown initial distribution
- While in reality the beam parameters might be more favorable, it feels too risky to proceed with this version

🛠 Fermilab

- In the "HINS" version, assuming full neutralization, the beam looks reasonable
 - A big uncertainty with initial conditions and possible degree of neutralization
 - · Predicts scraping already in the first solenoid

Rms and full envelopes for WB initial distribution. J.-P. Carneiro, TRAC. No space charge. ε_rms_n=0.47 μm.

Discussion

- Version 3 seems to be too risky considering big uncertainties with the initial beam properties
 - Also, more expensive
- Version 2 (with bend)
 - Not clear how beneficial is the bend
 - Seems to create an aperture restriction
 - Beam profiles reported from the HINS MEBT are clean; no indications of contamination by H2+, H3+
 - Likely lost in LEBT and RFQ
- Version 1 (replicating HINS): the most likely to work
 - one still might consider adding an EID to improve neutralization

🛠 Fermilab

- Need to understand options with a critical device
 - Can one use interlocking of the RFQ power?

Possible timing

- The issue of a possible thermal stress may be alleviated by shifting the RFQ pulse with respect to IS's
 - Its duration can be likely decreased to <50 µs
 - In Vic's talk, ~30 µs seems to be enough for parameters to settle

- Slide 19

If to go with Version 1

- Does it need a pumping station in between?
- Can an EID be installed inside Sol2?
- Can the beam pipe inside Sol2 be made significantly larger?

🛠 Fermilab

- E.g. 3" ID vs 1.25"
- Requires new dipole correctors upstream of Sol2
- Any diagnostics to add? (e.g. scrapers from PIP2IT)

