ATLAS Analysis: Current model and future plans

ROOT Users Workshop, 9 - 12 May 2022 Heather Russell

University of Victoria

Overview

Oversimplified analysis flow:

Event Data Model (EDM): format in xAOD, DAOD files - not a simple ntuple, allows for very efficient storage of objects via decorations, shallow copies

ntuples created in dedicated analysis releases, by each (group of) analyses:

- select events
- run "CP" tools to calibrate, identify, and apply MC \rightarrow data scale factors to objects
- determine **systematic variations** and save these to event weights or trees

CP tools have EDM-based interfaces (inputs are the xAOD objects)

Final step is analysis-dependent

Run 2 analysis model

11 May 2022

Heather Russell

3

Run 2 analysis model

With systematic variations, analyses have O(1 - 10 TB) of data to process for their analysis

- (1) Make analysers' lives easier
- (2) Reduce CPU usage
- (3) Minimize disk space

Many things users want jibe with our technical requirements:

- Not over-storing data or MC [efficient skimming, efficient sharing]
- Fast processing of events [efficient organization of algorithms and selection]
- Practical best practices [no long grid wait times for very fast jobs, no large # of users running long jobs on lxplus nodes. Easiest workflow should be the recommended one]
- Efficient use of analysers' time [minimize bookkeeping, babysitting of grid jobs, manual repetition of automizable tasks]
- Optimization of systematic uncertainties [balance UX & "correctness"]
- Usable by non-experts [*i.e.* students with little programming experience]

Run 3 analysis model - Overview

https://cds.cern.ch/record/2696416/files/ATL-SOFT-SLIDE-2019-810.pdf

Run 3 analysis model - Details

xAOD Type	Size per event	Skimmed events: only for
AOD	600 kB	special cases in Run 3
DAOD	40 – 450 kB	Unskimmed, uncalibrated
DAOD_PHYS	50 kB	events: Main Run 3 format
DAOD_PHYSLITE	10 kB	— Unskimmed, calibrated events:
		available Run 3, main format by HL-LHC

PHYS slots into existing analyses with small modifications for new software ⇒ PHYSLITE is the fun part!

NB: Not everyone will be able to use PHYSLITE; we aim for 80% of analyses

PHYSLITE uses xAOD EDM, and will likely be based on RNtuple

Skimmed PHYSLITE should replace big ntuples many groups save

Big question: can we process xAODs and run CP tools using RDataSource/RDataFrame? How far can we push this up our workflow?

Improving the analyser experience

- (1) Calibrations are run in the AOD → PHYSLITE step: PHYSLITE contains calibrated objects + info for syst. variations
 - (a) Fewer tools needed for analysis jobs (faster, simpler, less error-prone)
- (2) Investigating simplification of CP tools (e.g. by parametrizing all systematic uncertainties) for PHYSLITE. *Could* work with RDF.vary() but will require significant R&D
 - (a) Vastly reduced storage, faster, simpler. Problematic for e.g. overlap removal and MET.

(3) Interactive PHYSLITE via analysis facilities. Example target workflow: Jupyter hub interface → batch/Dask/etc → plot Solves problem of how to process O(100 TB) of HL-LHC PHYSLITE

HistFactory forms the backbone of many of ATLAS's statistical tools for both measurements and searches

 \Rightarrow we are always interested in developments!

pyhf is also increasingly used within ATLAS

- partly because it introduced JSON configuration more easily readable format than xml, and a nice companion to JSON-formatted HEPData Easing combinations and publishing likelihoods (e.g. <u>https://atlas.cern/updates/news/new-open-likelihoods</u>)
- Very interested in the new RooFit JSON developments (see talk from C. Burgard - <u>https://indico.fnal.gov/event/23628/contributions/240368/</u>);
 - would be excellent if the pyhf JSON configuration were compatible with this

We should not assume that everyone will perform their full analysis chain using ROOT

Desirable: ROOT integrating seamlessly with the scientific python ecosystem

Concrete example: ONNX format (facilitates interoperability of machine learning software) with SOFIE

Suggested workflows, best practices also need to be easy for non-experts to understand

RDataSource and RDataFrame are allowing us to investigate pushing columnar analysis higher up the production chain

Processing HL-LHC amounts of data/MC will require distributed analysis workflows: prototyping these now