
High performance analysis with RDataFrame:
Scaling and Interoperability

Josh Bendavid (CERN/EP-CMG)
with input from

M. Cipriani, M. Dünser (CERN),
J. Eysermans, K. Long (MIT)

E. Manca (UCLA)

May 11, 2022
ROOT User’s Workshop

J.Bendavid High performance analysis with RDataFrame 1



Introduction

CMS-TDR-0122

Huge amount of data to be collected in HL-LHC-era, 20x
increase over today

Interplay between integrated luminosity, physics program,
trigger strategy, but ∼all searches and measurements
across all final states/phase space regions will have
significantly more data and MC to analyze

J.Bendavid High performance analysis with RDataFrame 2



Precision W measurements as a prelude to HL-LHC
computing

Personally working on precision W measurements in CMS

Inclusive W production is among the highest cross section
electroweak processes at the LHC → more than
3× 109W → ℓν produced per lepton flavour in LHC run 2 per
experiment

Example analysis for 1/4 of total run 2 integrated
luminosity and one lepton flavour:

800M single lepton-triggered data events with little to no
scope for skimming
1.5B Signal Monte Carlo events with little to no scope for
skimming

For this type of analysis HL-LHC is now

J.Bendavid High performance analysis with RDataFrame 3



Introduction

Broad analysis steps
1 Production of NANOAOD (on the grid)
2 Preparation/measurements of calibrations and corrections

(“Auxiliary Workflows”)
3 NANOAOD → histograms (nominal + systematic

variations)
4 Statistical analysis (maximum likelihood fit)

J.Bendavid High performance analysis with RDataFrame 4



ROOT-python ecosystem interoperability

A few frustrating or confusing things for users
Uproot and PyROOT provide different python representations
of the same ROOT objects (TFile, TH1, etc)

Uproot does provide from pyroot and to pyroot functions
which can help bridge the gap, can also convert between
python boost hists and root hists (though no THn support yet)

Not straightforward to use boost histogram python bindings in
RDF

PyROOT/cppyy can effectively create automatic python
bindings to the C++ Boost histogram library just by including
the header

without nice pythonic interface (UHI indexing etc)
with (much) more template flexibility
Not easily serialized (see GitHub Issue)
Objects are mutually incompatible with “official” python boost
histogram bindings (pybind11-based)

n.b. Recent improvements to Cling which properly allow O3,
inlining, and removing runtime checks bring runtime
performance on-par with pre-compiled code

J.Bendavid High performance analysis with RDataFrame 5

https://github.com/root-project/root/issues/9371


Why Boost Histograms?

Analysis uses large, complex multidimensional histograms → effort to add
HistoND support (THnT<double>) to RDF

Encountered three serious technical bottlenecks using RDF with HistoND

Memory limits: Histogram bins use more memory than reasonably
available per thread
Long merging times for per-thread histograms with 256 threads

1GB absolute limit for writing to file

Solution: Use std::atomic<double> (with CAS loop) for atomic
aggregation

C++ Boost Histogram templates provide convenient means to do this

Python boost hists provide great convenience for indexing and metadata
to manage the complexity of multi-dim histograms (and can be easily
serialized with pickle)

Being able to disable underflow/overflow bins leads to huge savings for

charge, boolean, category axes

J.Bendavid High performance analysis with RDataFrame 6



Event Batches vs Event Loop

https://www.boost.org/doc/libs/1_77_0/libs/histogram/doc/html/histogram/benchmarks.html

Boost histograms (in C++) provide an interesting example where
static/inlining optimizations matter for the per-event case, but largely
irrelevant for large batches

Make templates as specific as possible when using Boost histograms

with RDF J.Bendavid High performance analysis with RDataFrame 7

https://www.boost.org/doc/libs/1_77_0/libs/histogram/doc/html/histogram/benchmarks.html


Bridging python boost-histogram < − > PyROOT divide

One option: import identical version of the boost histogram
headers used to compile pybind11 bindings into Cling (jitting
can be thought of us a separate translation unit) and
pass/cast the pointers between pybind11 and PyROOT/cppyy

Pros: Zero copy
Cons: Careful synchronization of headers needed, pushing the
limits of ABI compatibility? constrained to precompiled
template instances

Alternative: Get the pointer to the storage and reinterpret
the memory (the relevant accumulator classes are all
standard-layout/layout-compatible)

In practice this actually works, but it’s extremely difficult to do
in a way which formally respects strict aliasing (depending on
your interpretation of P0593R6 this might be possible in a
standard compliant way)

J.Bendavid High performance analysis with RDataFrame 8



Bridging python boost-histogram < − > PyROOT divide

Strategy:
Carefully choose the appropriate axis type/template instance
for each axis link
Carefully choose the appropriate storage type/template
instance
atomic types are used for the storage where appropriate, using
a generic atomic adapter accumulator class link
A “mirror” histogram with compatible axes, layout, etc is
created
The pybind11 histogram storage is encapsulated by a
lightweight c++ class using the numpy array interface
(pointer/shape/strides) link
Conversion functions are implemented for filling/reading C++
Root and/or Boost hists through this array interface view

Conversion functions are provided in python: hist to root,
root to hist, hist to pyroot boost

J.Bendavid High performance analysis with RDataFrame 9

https://github.com/bendavid/narf/blob/6cd3ae80f5fe2d24a0e46c59018a561242f09cfb/narf/histutils.py#L25-L65
https://github.com/bendavid/narf/blob/6cd3ae80f5fe2d24a0e46c59018a561242f09cfb/narf/include/atomic_adaptor.h
https://github.com/bendavid/narf/blob/6cd3ae80f5fe2d24a0e46c59018a561242f09cfb/narf/include/histutils.h#L357-L379


Boost Histograms in RDF

Use pythonization to add a HistoBoost call to RInterface, which takes a
list of python boost-histogram axis types link

A helper class is used with RDF Book underneath to fill the C++ boost
histogram, and then fill the array interface view in the Finalize call link

The returned (cppyy proxy to) RResultPtr has its GetValue, etc methods

swapped out at the python level to return the python boost-histogram

instead (the actual RResultPtr just contains the array interface view with

the pointer to the underlying memory)

n.b. there are also HistXDWithBoost calls which produce ROOT

histograms as normal, but use C++ boost histograms (with templates

instantiated on-the-fly as needed) to provide the performance/atomic

aggregation benefits

J.Bendavid High performance analysis with RDataFrame 10

https://github.com/bendavid/narf/blob/6cd3ae80f5fe2d24a0e46c59018a561242f09cfb/narf/histutils.py#L166-L273
https://github.com/bendavid/narf/blob/6cd3ae80f5fe2d24a0e46c59018a561242f09cfb/narf/include/FillBoostHelperAtomic.h


Filling weight systematic variations in RDF

Prior to new Vary functionality, several ways to fill systmatic
variations “by-hand” using RDF

Many (not all) systematics can be represented purely by a
change of weight of Monte Carlo events (PDF variations, hard
process scale variations, lepton efficiency uncertainties, etc)

Naive way: One Histogram per variation

Yes the “nominal” histogram here is already an obnoxious 5D
hist with > 11, 000 bins +overflow/underflow (eta x pt x
charge x pass isolation x pass mt) and we just made 103 of
them for PDF variation

J.Bendavid High performance analysis with RDataFrame 11



Filling weight systematic variations in RDF

Much better way: A single histogram with one additional axis
for the PDF variation index

Two graph nodes instead of 103 (the indices are a constant)

Scalars are “broadcast” to be filled repeatedly with the index
and weight vectors

n.b. this is the reason why PR7499 existed

J.Bendavid High performance analysis with RDataFrame 12

https://github.com/root-project/root/pull/7499


Benchmark

Using 411M events of CMS NANOAOD (W+ → µν) and filling 10 copies
of the pdf variation histograms

256 threads (2 x EPYC 7702)

Hist Type Hist Config Evt. Loop Total CPUEff RSS
ROOT THnD 10 x 103 x 5D 59m39s 74m05s 0.74 400GB
ROOT THnD 10 x 6D 7m54s 25m09s 0.27 405GB
Boost (“sta”) 10 x 6D 7m07s 7m17s 0.90 9GB
Boost (“sta”) 10 x (5D + 1-tensor) 1m54s 2m04s 0.81 9GB
Boost (“sta”) 1 x (5D + 2-tensor) 1m32s 1m42s 0.77 9GB

Standard HistoND calls are bogged down by long single-threaded
histogram-merging step with so many threads → long runtime outside of
event loop and poor cpu efficiency
Actual event loop is still slightly faster with Boost histograms → speed
benefit of specific template instances outweighs overhead of atomic
accumulation (small when nbins >> nthreads as here)
Memory usage is much lower with atomic accumulation by construction

The last rows are 3.5x - 4.5x faster (4MHz!) despite containing the same

number of bins in total...
J.Bendavid High performance analysis with RDataFrame 13



Tensor Accumulation

Hist Type Hist Config Evt. Loop Total CPUEff RSS
ROOT THnD 10 x 103 x 5D 59m39s 74m05s 0.74 400GB
ROOT THnD 10 x 6D 7m54s 25m09s 0.27 405GB
Boost (“sta”) 10 x 6D 7m07s 7m17s 0.90 9GB
Boost (“sta”) 10 x (5D + 1-tensor) 1m54s 2m04s 0.81 9GB
Boost (“sta”) 1 x (5D + 2-tensor) 1m32s 1m42s 0.77 9GB

In the special case of systematic variations represented by weight
variations only, filling a 6D histogram N times is wasteful because the
first 5 axis indices are identical for every call

Boost histograms are flexible enough to allow e.g. a std::array<double>
as an accumulator type → stay with 5D histogram and move the
systematic axis into the weight

For complex systematics, to keep things organized, might want more than
one axis for systematic variations (last row is 103 x 10) → use
Eigen::TensorFixedSize

Tensor accumulation implemented in generic tensor accumulator adapter

wrapping boost histogram accumulator types and Eigen tensors link

J.Bendavid High performance analysis with RDataFrame 14

https://github.com/bendavid/narf/blob/6cd3ae80f5fe2d24a0e46c59018a561242f09cfb/narf/include/tensorutils.h#L17-L138


Tensor Accumulation

To make use of this, just need to make the weight column an appropriate
TensorFixedSize type

HistoBoost will automatically detect this and create the histogram with
the appropriate tensor accumulator type (can be combined with atomic
as well)

The python boost-histogram that you get back has additional Integer
axes created which correspond to the tensor dimensions

The user can also provide custom defined axes of the correct size in order

to keep track of systematics metadata (pdf indices along the axis, binning

for efficiency corrections, etc)

J.Bendavid High performance analysis with RDataFrame 15



Axis ordering and Cache Locality

Hist Type Hist Config Evt. Loop Total CPUEff RSS
ROOT THnD 10 x 103 x 5D 59m39s 74m05s 0.74 400GB
ROOT THnD 10 x 6D back 7m54s 25m09s 0.27 405GB
ROOT THnD 10 x 6D front 13m52s 30m27s 0.42 406GB
Boost (“sta”) 10 x 6D back 7m07s 7m17s 0.90 9GB
Boost (“sta”) 10 x 6D front 3m22s 3m33s 0.86 9GB
Boost (“sta”) 10 x (5D + 1-tensor) 1m54s 2m04s 0.81 9GB
Boost (“sta”) 1 x (5D + 2-tensor) 1m32s 1m42s 0.77 9GB

In the tensor/array weight-case the weights for the different systematic
idxs are contiguous in memory by construction
In the N+1-d histogram case it depends on the array ordering
TH1/2/3 and boost-histograms have fortran array ordering → systematic
idx axis is best at the front
THn has C array ordering → systematic idx axis is best at the back
The difference is about a factor of 2 for both root and boost hists (but
still > 50% additional gain from tensor filling)

largely accounted simply by skipping the extra FDIVs needed for

redundant value-to-index conversion for the 5 axes

J.Bendavid High performance analysis with RDataFrame 16



Optimized weight systematic filling vs RDF Vary

Hist Type Hist Config Evt. Loop Total CPUEff RSS
ROOT THnD 10 x 103 x 5D 59m39s 74m05s 0.74 400GB
ROOT THnD 10 x 6D back 7m54s 25m09s 0.27 405GB
ROOT THnD 10 x 6D front 13m52s 30m27s 0.42 406GB
Boost (“sta”) 10 x 6D back 7m07s 7m17s 0.90 9GB
Boost (“sta”) 10 x 6D front 3m22s 3m33s 0.86 9GB
Boost (“sta”) 10 x (5D + 1-tensor) 1m54s 2m04s 0.81 9GB
Boost (“sta”) 1 x (5D + 2-tensor) 1m32s 1m42s 0.77 9GB

TODO: test where new RDF Vary functionality fits in here (likely
somewhere in between)

Vary covers more general case than just weight variations → can it detect
and/or optimize for the weight systematic case?

Will Vary provide the option to fill systematics along an additional axes
instead of filling vectors of histograms? (very relevant for O(100) or
O(1000) variations)

Vary is currently tied to ROOT histograms(?), can it be interfaced with

custom helper/filler classes via RDF Book or similar?

J.Bendavid High performance analysis with RDataFrame 17



Aside on Threading Efficiency

Hist Type Hist Config Evt. Loop Total CPUEff RSS)
ROOT THnD 10 x 103 x 5D 59m39s 74m05s 0.74 400GB
ROOT THnD 10 x 6D 7m54s 25m09s 0.27 405GB
Boost (“sta”) 10 x 6D 7m07s 7m17s 0.90 9GB
Boost (“sta”) 10 x (5D + 1-tensor) 1m54s 2m04s 0.81 9GB
Boost (“sta”) 1 x (5D + 2-tensor) 1m32s 1m42s 0.77 9GB

Reaching this level of threading efficiency required some additional
improvements to ROOT PR9486, PR10318

This is related to use of global lists to manage TFiles and TChains and
therefore take the global write lock during the event loop

a.k.a “fully scalable mode” from Phillipe’s talk, which is now the default

for TTreeProcessorMT (and hence multithreaded RDF reading TTrees)

J.Bendavid High performance analysis with RDataFrame 18

https://github.com/root-project/root/pull/9486
https://github.com/root-project/root/pull/10318


Full Analysis Performance

“Full analysis” running on 330M data events, 720M signal
events and 360M background events

Nominal hist: 5D with >11,000 bins

Up to 2800 variations depending on the process

Total runtime: 9 minutes

TLDR from profiler: 58% on R unzipLZMA

Probably should just use zstd

We’ve taken a lot of care to minimize malloc

Debug symbols for jitted code would be great...

J.Bendavid High performance analysis with RDataFrame 19



Initialization Time

Initializing scale factors/corrections and corresponding
helpers, plus building the graphs takes about 40s, a lot of it is
jitting time

29% in ComputeODRHash which has been discussed before

Templates here are getting pretty complex...

J.Bendavid High performance analysis with RDataFrame 20

https://github.com/root-project/cling/issues/443


Initialization Time

For fun, an example of a template function instance (this one
gets compiled implicitly by cppyy, but the explicit declaration
would look like this)

J.Bendavid High performance analysis with RDataFrame 21



Aside about Eigen Tensors/Arrays

Need to be a bit careful using Eigen Tensors/Arrays within RDF since
they implement expression templates with some interesting semantics for
forcing evaluation
This is also an opportunity...
Consider the following idiomatic RDF defintion (counts gen leptons)

Since there are many gen particles per event, this may exceed the
SmallVector optimization and trigger allocations
Can directly use e.g. Eigen Arrays to do
the same thing (adopting the memory from the RVec using the Eigen::Map)

Running this 10x per event on 430M events, RVec version is ∼1m30s,

Eigen version is ∼1m00s (comparable to by-hand loop)
J.Bendavid High performance analysis with RDataFrame 22



Aside about Eigen Tensors/Arrays

Some question marks about best use of expression templates in a
computational graph: when to store unevaluated expressions vs forcing
evaluation?

How to force evaluation without triggering allocation in the function?

Eigen::Array with dynamic size has std::vector-like allocation
semantics, so a simple solution is to return unevaluated expressions
from the function, but store an evaluated Array in the results vector
of the RDF::Define object → memory can be reused on assignment
and will only reallocate when encountering (much) larger events
than previously

Requires being able to set the result type of Define calls

independent of the function return type (but could also detect this

specific case automatically if expression templates were more

deliberately supported), also related to PR9174

J.Bendavid High performance analysis with RDataFrame 23

https://github.com/root-project/root/pull/9174


Numba+Numpy Performance

Modest overhead from memory allocation/intermediate RVecs
visible here (this example has arrays which are usually larger
than the small vector optimization in RVec)

Numba + Numpy has terrible performance

Enrico and Ivan tracked this down to atomic operations in
memory allocation/deallocation functions of Numba’s numpy
implementation → contention between threads/broken scaling
Hopefully possible to fix/avoid

Implementation Time

C++ for loop 62s
C++ RVec 86s
C++ Eigen::Array 58s
python numba for loop 63s
python numba + numpy >40 minutes!?

J.Bendavid High performance analysis with RDataFrame 24



Numba+Numpy Performance

J.Bendavid High performance analysis with RDataFrame 25



Aside: Some other PyROOT/cppyy issues/complaints

Some classes of template functions with auto return type can’t
be called from PyROOT → Boost histogram factory functions
in particular had to be wrapped with versions not using auto

Error messages from template instantiations in PyROOT are
obscure and/or hidden → for debugging I had to explicitly
declare template instances with TInterpreter::Declare, which
gives sensible error messages (equivalent to compiling with
clang)

Above could be related to different calls used to trigger the
jitting? (follow-up from discussion here?)

J.Bendavid High performance analysis with RDataFrame 26

https://github.com/root-project/root/issues/9112


Some take-aways

A fair bit of tools/utilities have been implemented for
interoperability between ROOT and Boost histograms both in
python and C++

Huge benefits from atomic accumulation in certain
circumstances (ie very large histograms)

Major performance gains for weight-based systematics by
using array-like accumulators

Eigen::TensorFixed size is a convenient realization of this since
it allows to naturally organize the variations along multiple
axes

Some other interesting possibilities related to the use of Eigen
with RDF (expression templates)

Jitting these templates is slow, but we know why (can it be
improved?)

J.Bendavid High performance analysis with RDataFrame 27



Next Steps

Some of what I’ve shown/written could be upstreamed to
C++ Boost Histogram library (helpers/adapters for
accumulation etc)

Interoperability between python boost-histogram and
PyROOT is not perfect (requires a copy), worth implementing
full pythonization of boost histograms in PyROOT? (but then
how to serialize them? hook into boost serialization?
implement something using numpy a la boost-histogram for
python pickling?), other ideas?

On the ROOT side one could take this either as a set of
lessons/examples/desired functionality for future histogram
and RVec/related development OR as a push to more centrally
support use of “foreign” objects with ROOT and RDF (push
HistoBoost RDF functionality into ROOT for example?)

J.Bendavid High performance analysis with RDataFrame 28



How are we using this for analysis in practice?

Basic utilities and extensions of RDataFrame functionality are
implemented in https://github.com/bendavid/narf/

Histogram conversion functions:
hist to root, root to hist, hist to pyroot boost
Some overlap with uproot functionality (but more complete
support for Nd histograms)

RDataFrame extended functionality
HistoBoost: Produce python hist histograms directly (C++
boost histograms used underneath for filling)
Histo1DWithBoost, Histo2DWithBoost,
Histo3DWithBoost, HistoNDWithBoost: Produce (pyroot)
Root histograms, but using C++ boost histograms
underneath for filling

“framework”-like functionality
Dataset class: Simple dataset metadata
Luminosity counting and json filtering tools
build and run: Simple helper function to build RDF graphs
given a list of datasets and a user-provided function, run all
the graphs, collect the output (also handles luminosity
counting and json filtering)

J.Bendavid High performance analysis with RDataFrame 29

https://github.com/bendavid/narf/


Not an RDF Framework

Basic utilities and extensions of RDataFrame functionality are
implemented in https://github.com/bendavid/narf/

Basic design principles:

Very little abstraction on top of RDF: user-provided python
function for graph definition which calls RDF Filter, Define,
HistoXD, etc directly
Provide only minimal extra functionality which is not available
in RDF

Metadata for individual samples/datasets
Manage the loop over datasets when building the graph
Help organize the outputs

Run directly on NANOAOD (no post-processing), though
anything that works with RDF can also be used as input

One thing which would be nice is a more coherent treatment
of collections (a la nanoevents in Coffea) → already on RDF
development plan presented by Enrico

J.Bendavid High performance analysis with RDataFrame 30

https://github.com/bendavid/narf/


One RDF Graph Per Sample vs One Graph To Rule Them
All?

Currently using one RDF graph per sample (data, W→ µν,
W→ τν, Z→ µµ...)

Use of multi-dimensional histograms naturally accommodates
one monolithic graph, with “sample index” as an additional
histogram axis

DefinePerSample is an essential ingredient to enable this (but
default values for missing branches are really required to fully
exploit this → also in the RDF development plan)

if/else logic in graph construction can be moved to
DefinePerSample logic, though possibly with some memory
overhead for redundant histogram bins (unfilled systematics
for some samples, etc)

J.Bendavid High performance analysis with RDataFrame 31



Not an RDF Framework

Output from narf build and run is a python dictionary
organizing the outputs by dataset, which can e.g. be directly
pickled

Good:

Can mix python hists and pyroot objects
python hists pickle without ROOT IO (no 1GB limit)

Bad:

Full set of histograms, etc are written (or read back) all at
once → time/memory implications
Would be nice to have a generic solution for writing/reading
histograms one at a time, like with root files (something
hdf5-based is probably not too difficult)

J.Bendavid High performance analysis with RDataFrame 32



Luminosity filtering and counting tools

Helpers implemented in https://github.com/bendavid/narf/blob/main/narf/lumitools.py

jsonhelper
construct with a json file
resulting helper returns a boolean given run and lumi section (to be
used with RDF Filter)

narf inserts this into the graph for the event loop automatically

using build and run when a json file is provided as part of the

sample metadata

lumihelper
construct with a csv file containing integrated luminosity per run
and lumi section (from brilcalc with –byls option)
resulting helper returns the integrated luminosity given a run and
lumi section
narf automatically constructs a graph using build and run running
on the LuminosityBlocks tree in NANOAOD and computes the
integrated luminosity for the analyzed data on the fly

guarantees consistent luminosity calculation and extremely
convenient for running on partial statistics
at least for data on local ssd this takes only a few seconds

These helpers can also be used standalone in principle

J.Bendavid High performance analysis with RDataFrame 33

https://github.com/bendavid/narf/blob/main/narf/lumitools.py


How are we using this for analysis in practice?

Analysis specific stuff can be implemented in a separate
repository

narf is used as a git submodule
Where external data is needed (scale factors/corrections/etc)
C++ helper classes are implemented holding Root or C++
boost histograms, etc

these can be used directly in an RDF Filter or Define as long
as they implement a non-overloaded operator ()
Plans/WIP to significantly extend this functionality in RDF,
see ROOT PPP presentation
could also use correctionlib for some things (but all of our
corrections are custom/somewhat involved for the moment)

“Top-level” analysis implemented from a main python file, but
of course utilities and re-usable graph subsets are factorized
into other files, functions, etc

J.Bendavid High performance analysis with RDataFrame 34

https://indico.cern.ch/event/1091860/contributions/4591043/attachments/2336189/3981916/rootRDF-Oct28-2021.pdf


Software Environment/Packaging

So far have required custom Root builds to have all the needed
patches, and very recent Eigen and C++ Boost versions
Singularity image available at
/cvmfs/unpacked.cern.ch/gitlab-registry.cern.ch/bendavid/cmswmassdocker/wmassdevrolling\:latest

(also with relatively complete set of python stuff)

Getting good performance also requires using O2 or O3 for
jitting: (this can be forced from environment variables → will
probably set it globally in the singularity image in the future)

import ROOT; ROOT.gInterpreter.ProcessLine(".O3")

can also be forced from environment variables → will probably
set it globally in the singularity image in the future
Will also become less important when LLVM is updated in
ROOT in the future

All needed improvements to ROOT are now upstream (in
both master and v6-26-00-patches though not yet in 6.26.02)

Once next 6.26 patch release is out, can probably do things in
a conda environment (or native Arch packages) as well

J.Bendavid High performance analysis with RDataFrame 35



Hardware and I/O

Using a (very) big single machine for the moment provided by
CERN IT for analysis and R&D:

2 x EPYC 7702 64 core (128 cores/256 threads total)
1TB memory
20 x 3.84 TB Gen4 NVME SSDs

Main storage array has 16 Gen4 NVME SSDs in raid0 →
100Gbytes/sec sequential read and 60Gbytes/sec sequential
write in synthetic benchmarks

100gbps Network Interface (+ connection to eos)

n.b. currently limited to ∼ 50gbps in parallel xrdcp from eos
due to only 8 receive queues/interrupt handling threads →
improve through kernel configuration parameters?

J.Bendavid High performance analysis with RDataFrame 36



Hardware and I/O: Next Steps

Would like to (eventually) explore distRDF with Spark/Dask
etc for multi-node scaling e.g. at CERN or MIT subMIT
system

Ability to use multithreaded tasks and RDF Book for custom
aggregation (Boost histograms) essential to stay within
memory constraints

Planning in the near future to repeat direct benchmarks for
local SSD array vs xrootd+eos vs CephFS (vs XCache?) at
CERN to highlight remaining bottlenecks for typical eos-based
workflows

Can consider tests with RNTuple and/or object stores as well
following Monday discussion

Is EOS at CERN sufficient for high performance analysis
moving forward, or do we need CephFS and/or (Ceph?)
object store? (speaking “only” of final NanoAOD or similar
analysis formats for “final” analysis step)

J.Bendavid High performance analysis with RDataFrame 37



Benchmark: Gradient Aggregation: IO Limits

CPU Storage Avg. Rate (GBytes/sec)

2 x Xeon (32C/64T) eos/xrootd (eoscms) (25gbps) 1.64
2 x Xeon (32C/64T) eos/xrootd (test inst.) (25gbps) 2.62
2 x Xeon (32C/64T) CephFS HDD (25gbps) 2.60
2 x Xeon (32C/64T) CephFS SSD (25gbps) 2.64
2 x Xeon (32C/64T) Local SSD (16xSATA) 5.21

thanks to IT-ST group for help setting up some of these tests

Need to set e.g. XRD PARALLELEVTLOOP=16 to get good eos
performance

EOS+xrootd standard production instance not quite scaling up to
network limits (possible xrootd client/ROOT bottlenecks?)

Extremely good performance of EOS test instance, and CephFS (CentOS
8 kernel client), approaching limits of ethernet connection

Reach 5.2GBytes/sec from local SSDs, approaching limits of disk

array - PCIE 3.0 8x SATA controller), to be tested on newer machine

(much faster disks and 100gbps network)

J.Bendavid High performance analysis with RDataFrame 38


