
FunRootAna
T. Bold - AGH UST, Kraków, Poland

1

Agenda
• Why FP?

• Features of FP

• Typical applications

• c++

• FunRootAna for plain ntuple and xAOD analyses

• Want more?

2

A bit of history

• In functional programming the focus is on telling the computer what to
do rather than how to do it

• FP is rooted in mathematical Category Theory - solid foundations

• Then the hardware guys came up with model closer to the hardware -
imperative programming

• Here you concentrate more on telling the computer of how to do the
computation

3

What do we write in FP?
• Functions

• pure - w/o the side effects

• total - always produce the result

• higher order, partially applied, recursive …

• Functional classes

• no modifiable state

• The profit is: a line of code does all (and only) what it says - referential transparency

• Reading, understanding & maintaining such codebase is just simpler, especially

in large systems

• The functional code is typically more compact - good - who likes to type!

4

Applications
• Virtually everywhere but ..

• Big data through map-filter-reduce paradigm

input

partit
ionin

g map

Your result!

reduce

Probably the nicest example:  
Apache Spark

Each arrow is a
function!

All of them can
execute in parallel

In fact very similar
to what we do:
Our result is a

histogram

5

c++
• Multi-paradigm also means functional

• Higher orders were there since long time (i.e. std::copy_if)

• First steps towards making c++ more explicit FP were made in std11 (lambdas)

• Maybe one day shorter syntax will be available?

• std20 introduced ranges (half of the functionality, map(transform) & filter are there) - the
reduce in std23

• the std::option become full fledged “maybe” Monad in std23 
std::option(x) 
 .and_then([](auto x){ return f(x); }) 
 .and_then([](auto x){ return g(x); }) …

6

FunRootAna
• An exercise: see how far one can go with functional approach (not orthodox though) to the analysis

of plain ROOT Tree and/or ATLAS xAOD

• Did not care to match the c++ standards etc. just wanted to end up with most compact FP
code to do the job

• Did not taken care of optimisations, just tried not to do obviously bad things (e.g. runtime
polymorphism)

• And the job was to take the data-> map-filter-reduce -> histograms

• 3 ingredients:

• a straightforward FP TTree interface,

• functional lazy view FP container with a complete map-filter-reduce functionality,

• streamlined histograms handling, +small utilities

• Can be compiled as ATLAS library or standalone ntuple analysis

7

https://tboldagh.github.io/FunRootAna/

https://tboldagh.github.io/FunRootAna/

Elements of FunRootAna:
TTreeAccess

• TTree access class 
streamline the single branch access, via: get<type>(name) 
allow for combining branches into a custom class (i.e. TLorentzVector) 
streamline iteration over events 

 // a simple loop
 //for (PointsTreeAccess event(t); event; ++event)
 // or via functional collection interface
 TreeView<PointsTreeAccess> events(t); // the tree wrapped in an functional container

 events
 .take(2000) // take only first 2000 events
 .filter([&](auto event){ return event.current() %2 == 1; }) // every second event (because why not)
 .foreach([&](auto event) {
 // … event processing
}

8

Elements of FunRootAna:
Functional container

• FunctionalInterface 
provides numerous methods (~20) to map-filter-reduce the data in containers 
 

A very compact syntax to transformations.

#define _rtrk(CODE) [&](const TrackInfo &_) { return CODE; }

9

auto loose_tracksVec = lazy_view(event.getTrackInfo())
 .filter(_rtrk(_.pt < 5.0 && _.pt > 0.3 && std::fabs(_.eta) < 2.5)).stage();

auto loose_tracks = lazy_view(loose_tracksVec);

auto tight_tracks = loose_tracks.filter(_rtrk(_.qual == TrackInfo::Tight));

const double Nch = tight_tracks.map(_rtrk(_.weight)).sum();

Elements of FunRootAna:
LAZY functional container

• The transformations in fact do nothing until some of the reduction step is
not involved.

auto data = container.filter(F(std::norm(_) < 1))
 .filter(F(_.x>5))
 .take(10)
 .sort(F(_.x))
 .reverse()
 .map(F(_.y))  
 .filter(F(_>0));
auto total = data.sum();

No data transformation occurred
here!

Operations planned above are
executed here, once the sum

calculation is needed.

10

Elements of FunRootAna:
Terse syntax

• Rich API and FP approach
allow expressing complex
operations in a very
compact & readable way

// data1 is a vector containing doubles
double max = std::numeric_limits<double>::min();
for (auto el: data1) {
 if (el > max) {
 max = el;
 }
}
for (auto el: data2) {
 if (el > max) {
 max = el;
 }
}
if (max == std::numeric_limits<double>::min()) {
 max = 100;
}
// or with STL
double max = 100.0;
auto max_el1 = std::max_element(std::begin(data1), std::end(data1));
if (max_el1 != std::end(data1))
 max = *max_el1;
auto max_el2 = std::max_element(std::begin(data2), std::end(data2));
if (max_el1 != std::end(data2) && *max_el2 > *max_el1)
 max = *max_el;

// or with the functional container
const double max = data1.chain(data2)
 .max().get().value_or(100.0);

This example, process two containers,
and find the max in them, if no

elements, then result should be 100

11

• Also available: rand/
arithmetic/geometric
streams, ranges, iota,
stager, inserters.

Elements of FunRootAna:
compact histograms handling

• We need to declare, book, fill and save histograms

• That is 4 places! Typically in two files (.h and .cxx)

• Helper class + set of macros streamline this in FunRootAna to a single line

• placed directly in the loop over events

• HIST1, HIST2, EFF, PROF macros to create, book, register and expose to fill operation in one go

• set of >> operators to unify filling from PODs and lazy containers

int category = ..
category >> HIST1("categories_count", ";category;count of events", 5, -0.5, 4.5);
const auto x = fly::lazy_view(data); // data here is plain std::vector<float>
x >> HIST1("x", ";x[mm]", 100, 0, 100);
x >> HIST1("x_wide", ";x[mm]", 100, 0, 1000);
x.filter(F(category==0 && std::fabs(_) < 5)) >> HIST1("x_cat_0_near_range", ";x[mm]", 100, 0, 5);
x.map(F(1./std::sqrt(_))) >> HIST1("sq_x", ";x[mm]^{-1/2}", 100, 0, 5);

12

Summary
• An FP approach to data analysis in ROOT is quite neat

• Typical for FP, safety, terseness, expressiveness are within the reach

• Using FunRootAna makes you to write quite a minimal amount of code
(and concentrate on the essence)

• Tried in smaller and larger analyses of ATLAS data.

• The future? Up to you mostly :-).  
In few years the ROOT system will need to cooperate with c++ ranges
anyway - some form of similar interface will be necessary.

Got interested?

14

https://tboldagh.github.io/FunRootAna/

https://tboldagh.github.io/FunRootAna/

