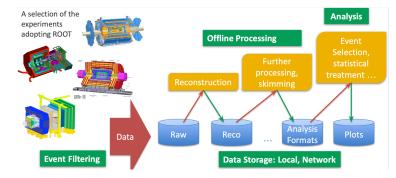
Introduction to ROOT What to teach ?

Lorenzo Moneta



- Use as example the introduction course for CERN Summer students (link available <u>here</u>)
- Additional material available for more in-depth courses. See in the <u>ROOT Web site</u>

ROOT Introduction

A quick tour of ROOT What is ROOT ? ROOT building blocks What can you do with ROOT ? ROOT Application domain Documentation resources

- Web site : manuals, reference documentation, tutorial examples
- How to build ROOT
 - how to get a binary distribution

ROOT Prompt

Introduction to ROOT interpreter
 ROOT as a calculator
 ROOT interpreter commands (.x , .!,...)
 Work with interactive C++
 e.g. include files, instantiate objects, etc...

Working with ROOT macro

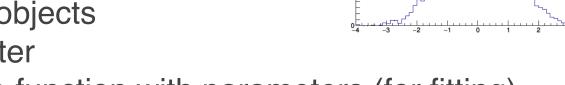
- Names vs un-named macro
- Load/Execute macro
- Using ACLIC
- Using root-config

Jupyter notebooks and SWAN

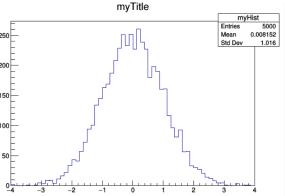
ROOT Prompt: some comments

Named vs Un-named macro:

- some notion of ROOT object management is required
- Example:
 - Histogram should be created with new in named macros
 - Objects in un-named macro don't go out of scope
- Using ACLIC not useful anymore with Cling
 - only for using different compiler than Clang
 - root-config often better choice
- Start already using Python interface ?

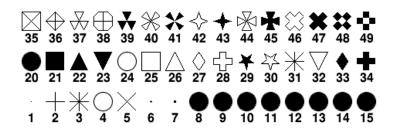

Histograms Graph and Functions

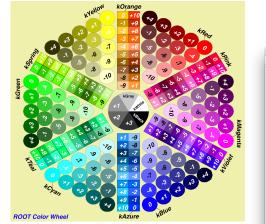
What are histograms ?
 How to create histograms in ROOT
 Some on histogram management

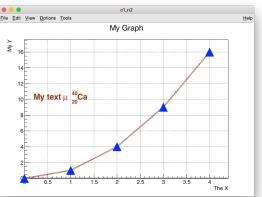

 use DrawCopy() / DrawClone()

 Functions: TF1 objects

 function plotter


- how to make function with parameters (for fitting)
- TGraph classes
 - Display data points with/without errors

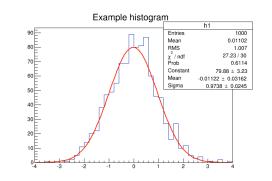



Introduction to Graphics

Some basic tools for doing ROOT plots

- how to make nice plots in ROOT
- useful to point at examples and documentation of <u>THistPainter</u> class

Notes on ROOT Histograms


Use always TH1D as default type

- Loss of precisions by using TH1F
- Useful only in case of memory issues (multi-dim histograms)
- Useful to see usage from Python
 - Fill histogram from a numpy array using FillN
 - Create TGraph objects from numpy arrays
 - Create TF1 from a Python function
- TH1 vs TGraph
- Mention multi-dimensional histograms and profile
 - Projection operations

Introduction to Fitting in ROOT

Basic fitting with ROOT

- what is fitting ?
- How to perform a fit to a histogram or graph
 - create a parametric function
 - fitting the ROOT object (fit options)
 - Examine the result

Notes on ROOT Fitting

- Good to show FitPanel
- important to provide links to documentations
 - Different ways to create TF1
 - fit options (in TH1::Fit and TGraph::Fit)
 - Minimization (how to make a fit converging)
 - FitResult class
- Link to statistics documentation:
 - Least square fit vs Likelihood fits
 - Parameter uncertainties and Minos erros
 - Goodness of fit
- Add links to more advanced fitting:
 - Function composition and convolutions
 - RooFit

•••	Fit Pane	el			
Data Set:	TH1D::h1			-	
Fit Function					
Type: Prede	ef-1D 🔻 gaus			•	
Operation					
Nop	C Add C Norm	Add O	Conv		
gaus					
Selected:					
gaus		Se	t Para	meters	
General Mini	nization				
Fit Settings					
Method		Lla	er-Defi	nod	
Chi-squ	iare 💌	08	er-Den	neu	
🗌 Line	ar fit	🔳 Rob	oust:	0.95	
Fit Options			,		
Integration	gral	🗌 Use	range		
Best errors			Improve fit results		
All weights = 1 Add to list					
Empty bins, weights=1 🔲 Use Gradient					
Draw Optic	ns				
SAN	1E				
🗆 No d	Irawing				
🗖 Do r	not store/draw	E	dvanc	ed	
X -3.00				3.00	
<u>U</u> pdate	<u>F</u> it	<u>R</u> ese		<u>C</u> lose	
TH1D::h1 LI	B Minuit MIGRAD	Itr: 0		Prn: DEF	1

PyROOT

Provide some examples on how to use ROOT classes in Python

```
import ROOT
h = ROOT.TH1D('h1','My Histogram',100,-5,5)
h.FillRandom('gaus')
h.Draw()
```

Important to show some basic Pythonizations:

e.g. using numpy arrays for signatures using double* or float*

- Management of ROOT object in Python
- Provide links to Python examples and available Pytonizations

ROOT I/O and RDataFrame

- Read/Write Data
 - TFile documentation

- > rootls -l myfile.root
 TH1F Jun 24 15:02 2019 h "h"
- How to write and then read histograms from a file
- TBrowser
- Introduction to TTree
 - columnar data storage
 - not showing TTree API (e.g. TTree::Draw)
- Introduction to RDataFrame
 - Show basic functionality
 - Filter/Define and Actions (fill histograms)
 - Saving data (Snapshot)
 - Using callable functions

auto d2 = d.Filter("x > 0")
.Define("z", "x*x -

```
// make multiple histograms out of it
auto hz = d2.Histo1D("z");
auto hx = d2.Histo1D("x");
```

Notes on I/O

Showing TTree API is too complex for an introduction course
 Maybe only TTree::Draw could be mention
 Better to show RDataFrame
 Good to show available Pythonizations

easy conversion to Numpy and Panda

Can be useful to show shortcuts available in the Cling interpreter for objects managed by the current directory TFile::Open("hsimple.root"); hpx->Draw()

- Important to provide links to update documentation and tutorial examples
 - improved significantly last year the ROOT documentation
- Crucial having time to go through some code examples (e.g. using Jupyter notebooks) on the shown topics
- Often important to have both C++ and Python examples
 - give choice to students to work in one of the two