# What is ROOT? Why do we use it?

Answer:

ROOT does what physicists do:

It makes plots.

# Before you're insulted, consider my audience

- My ROOT tutorial has been part of Nevis Lab's REU program since 2001.
  - REU = Research Experience for Undergraduates
  - Funded by NSF (US National Science Foundation)
  - Provides a 10-week research program for undergraduates
    - Nevis emphasizes admission for students that come from smaller institutions.
    - Having this experience on their transcripts helps the undergrads when they apply to grad school.
- Most of the students in my tutorial are REU students
  - They all have laptops
  - They might know Python
  - Mostly they don't know programming at all!

# My audience (cont'd)

- More over-generalizations
  - They don't have familiarity with a command line
    - "Shell? That's something you find on the sea shore, right?"
  - They tend to save all their files on the Desktop
  - They don't know what a "directory" is.
  - They have no experience with statistics.
  - In particular, they don't know what a histogram is.
  - They probably have worked with an "office suite".
    - Microsoft Word/Excel/Powerpoint
    - Apple Pages/Numbers/Keynote
    - Google Docs/Sheets/Slides
  - They may also have worked with Mathematica or Matlab.

#### My official mandate

- This what John Parsons asked me to teach back in 2001. This directive has been unchanged since then:
  - Assume the students are given an ntuple
  - Make histograms of variables in that ntuple
  - Fit a histogram to a function
  - Apply a cut to a variable

#### What I think the students need

#### Over the next two days, you will learn how to:

- look up ROOT command references
- plot a function
- histogram a variable
- fit a histogram
- get a variable from an n-tuple
- apply cuts
- do a quick study using TreeViewer (optional)
- create C++ or python code for an n-tuple
- use the Jupyter notebook server for quick coding
- -- but not necessarily in this order!

#### Realities

- There are several NSF-funded research groups at Nevis
  - In 2022, I'll be teaching students from ATLAS, Neutrino (MicroBooNE, SBND, DUNE), VERITAS/CTA, XENON, Astrochemistry, RARAF.
  - Each individual group's use of ROOT is different.
    - At least one group doesn't use ROOT at all, but send their students to the tutorial to spare the researchers a couple of days before they need to supervise anyone.
  - Some of the groups want their students to learn Python, others want them to learn C++ (because that's the language of their analysis frameworks).
- At most, I'll have the students for three 3-4 hour sessions in their first couple of days at Nevis. After that, they'll be tossed into the wild jungle of research.

# https://xkcd.com/794/ by Randall Munro

# Motivating students – my approach

- Justify ROOT
  - e.g., Why not use Mathematica? Excel? Matplotlib?
- Teach them what "histograms" and "ntuples" are, from first principles.
- The same with a "fit"; they may not even seen a linear regression before.
- Describe just enough Linux for the students to complete the tutorial (e.g., ls, cd, less, man)
- How to use ROOT documentation.
- Humor
  - Maybe too much, but I think the result is that the students are annoyed at me instead of being annoyed at ROOT.

What is ROOT? Why do we use it?

Answer:

ROOT does what physicists do:

It makes plots.



THERE'S NO REASON TO THINK THAT PEOPLE THROUGHOUT HISTORY DIDN'T HAVE JUST AS MANY INSIDE JOKES AND CATCHPHRASES AS ANY MODERN GROUP OF HIGH-SCHOOLERS.

# Teaching students – my approach

- It's more "workshop" than "tutorial"
  - I have a 15-minute talk to introduce concepts and a simple demo.
  - The rest is having each students work through a written tutorial on their own.
    - We all sit in a room. If the students encounter a problem with the material, they call me over to work one-on-one.
- For the most part, I do not give pre-written code examples.
  - By typing in the commands themselves, they inevitably make mistakes... and learn from them.
  - My observation is that the students don't learn much from filled-in notebooks.
    - Pre-existing notebooks are invaluable as references, and I've personally learned quite a bit from the example notebooks on the ROOT site.
    - For a student who doesn't know programming, they're just confusing.

#### Nevis ROOT resources

- I use <u>environment modules</u> to distribute ROOT versions on the CentOS 7 systems of the Nevis particle-physics Linux cluster.
  - As of May-2022: ROOT 6.26.00, Python 3.11.0, GCC 11.2.0
  - I compile these packages from source, to offer the latest-and-greatest.
  - Most Nevis researchers use their experiments' analysis frameworks, each of which has their own versions of ROOT, Python, etc. It's typically only the summer students who use module load root.
- I have a JupyterHub server with ROOT C++ and Python available to the students, and to the particle-physics research community at Nevis.
  - I installed other Jupyter kernels on the JupyterHub server; e.g., Julia, Octave, R, SageMath. I don't believe anyone at Nevis uses them, but they're there!
  - As of May-2022: ROOT 6.24.06, Python 3.6.8 (the CentOS 7 versions on EPEL).

# Nevis ROOT resources (cont'd)

- I specifically instruct my students not to attempt to install ROOT on their laptops.
  - At the start, I tell them to use ssh to access a Nevis server and use interactive ROOT. After some initial exercises, I show them our JupyterHub server. They choose how to proceed with the tutorial from there.

#### Reasons:

- There's not enough time for me to micro-manage the installation of ROOT on heterogenous laptop environments.
- Even fiddling with package managers like conda would take too long; recall that many students have never used their command-line environment before.
- If the students want to take the risk, or someone is taking my tutorial who's not at Nevis, I have instructions late in the tutorial on how to install ROOT: conda, docker, singularity...
  - The docker image I point them to is wgseligman/jupyter-pyroot.

### Teaching RDataFrame?

 It's an optional part of my tutorial, but it's so far down in the sequence of pages that I suspect none of the students have read it.

#### • Reasons:

- RDataFrame doesn't may not make sense if you don't understand the idea of looping over events.
- If I'm teaching the students basic programming, I have to teach them about for-loops and if statements anyway.
- To use RDataFrame for anything but the most simple tasks, you need to be moderately skilled at programming (e.g., functors/lambdas in C++, decorations/pythonizations in Python). This is beyond what I can teach them (see previous slides).
- The concept of "lazy evaluation" is another idea that's hard to grasp for new students.
- As far as I know, none of the research groups at Nevis use RDataFrame in their current analyses. This may change, but until then it may be a waste of the students' time.
- If I had a week, instead of just 1-1.5 days...

#### Manual and Tutorials on the ROOT web site

- Umm... umm... How do I put this?
- Clearly many hours of time and effort were spent on the site. But...
- For the reasons I've listed on the previous slides, they're simply not a useful tool for my students.
  - The ROOT manual and tutorials assume that the reader already knows C++ or Python
  - They assume that the reader has some formal understanding of the difference between a programming statement and an interpreter command (e.g., .ls).
  - The code in the tutorials have almost no comments.
    - SHAME! SHAME! SHAME!
- I feel that most useful introductory reference is still the paper version of the rapidly-aging ROOT User's Guide. It's easy for a student to skim past the material that's not relevant to them.

# As long as I'm whining...

(This is not so much a Train-the-Trainers issue as it is a Developers issue. But it has a training impact.)

- I'm sure ROOT works just fine when you run on it your laptop.
- But when run on a remote server with NFS-mounted filesystems, ROOT versions have grown steadily more sluggish.
  - This creates a lousy first impression for new students in my workshop.
  - I have to remember to set the options in \${ROOTSYS}/etc/system.rootrc
    - ExpandDirectories to no
    - Browser.Name to TRootBrowser or TRootBrowserLite
      - If you leave the current default of ROOT::Experimental::RWebBrowserImp, and start TBrowser, there'll be very long delay as it starts a web browser on the remote system and pumps the graphics to your laptop.
        - Yesterday, Serguei Linev taught us how to use RBrowser remotely via ssh port forwarding. Again, this is too much for our students.
      - Even with ExpandDirectories set to "no", TBrowser now takes a long time to start up; about 30 seconds on my home Macintosh!
        - Of course, maybe this is just me.

#### What's next for the Nevis ROOT tutorial

- I'm teaching the incoming group on June 1-2, 2022.
  - Due to COVID, I'll have to teach via Zoom again this year.
- I've switched from using a PDF file to using web pages.
  - Sphinx document management
  - Pages written in <u>Markdown</u> variants <u>MyST</u> and <u>reStructuredText</u>
  - ReadTheDocs theme
- I've learned things from the 2022 ROOT Users Workshop. They'll find their way into my 2023 tutorial.
  - Who knows? I could figure out a way to teach about conda and RDataFrames to the REU students without confusing them.
  - Maybe Lorenzo Moneta's and Enrico Guiraud's talks will change my approach. I hope so!
- The 2022 version of my tutorial will be posted here within the next couple of weeks:

https://www.nevis.columbia.edu/~seligman/root-class/