
ROOT Users Workshop, May 9-13, 22

Julia, C++, and ROOT

Philippe Gras

CEA/IRFU � Saclay

May 9, 22

Introduction

De�nitions
I Julia: a great programming language that allies performance with

ease of programming: may supersede the current Python ⊕ C++
HEP paradigm.

I C++: a high-performance language we all know,

I ROOT: a great and wide-used NHEP data analysis framework based
on C++ and we all use.

This talk

I will address the interface between the three.

2 / 15

Introduction to Julia
Solving the two-language problem

Fast/easy coding Fast running
Python ⇔ C/C++

⇒ E�ect: mix of languages and going back-and-forth between them

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah tackled the
problem in 2009

I Birth of Julia, release 0.1 in 2013, a language that provides both fast
coding and running

I Breakthrough recognised by 2 awards: James H. Wilkinson Prize in
Numerical Analysis and Scienti�c in 2019W, IEEE Computer Society
Sidney Fernbach Award in 2019W

Julia groups advantages of Python and C++ in a single
programming language

3 / 15

https://www.ll.mit.edu/news/wilkinson-prize-goes-developers-flexible-julia-programming-language
https://www.ll.mit.edu/news/wilkinson-prize-goes-developers-flexible-julia-programming-language
https://www.computer.org/press-room/2019-news/2019-ieee-fernbach-award-edelman
https://www.computer.org/press-room/2019-news/2019-ieee-fernbach-award-edelman

Introduction to Julia: use in NHEP

I KM3Net high-level software has a Julia environment in development in addition
to the Python one (reported hereW)

I The LEGEND 0νββ experiment uses two parallel stacks, the primary in Python
and the secondary (for validation and experimentation) in Julia. C++ is used for
Geant-4 simulation software (reported hereW)

I LHCb analysis that leads to the �rst observation of the Ω−
b → Ξ+

c K
−π− decay

(10.1103/PhysRevD.104.L091102W) uses Julia: see Julia for data analysis in
High Energy Physics, Mikael MikhasenkoW. M. Mikkhasenko has used Julia also
for a JPAC analysis (doi:10.1103/PhysRevD.98.096021W) and a COMPAS
analysis (doi:10.1103/PhysRevLett.127.082501W) as reported hereW.

I Julia HEP organisation on GithubW

I Paper demonstrating the competitiveness of Julia for HEP published in last April
Performance of Julia for High Energy Physics Analyses, Marcel Stanitzki and Jan
StrubeW

I Julia-in-HEP session of PyHEP 2021 workshopW, HSF Julia for HEP
Mini-worksopW

Interest of Julia in NHEP is growing.

4 / 15

https://indico.cern.ch/event/1019958/timetable/#9-python-based-tools-and-frame
https://indico.cern.ch/event/1074269/#4-case-study-julia-in-a-workgr
htpps://doi.org/10.1103/PhysRevD.104.L091102
https://live.juliacon.org/talk/TRMZFB
https://live.juliacon.org/talk/TRMZFB
https://doi.org/10.1103/PhysRevD.98.096021
https://doi.org/10.1103/PhysRevLett.127.082501
https://indico.cern.ch/event/1074269/#5-julia-and-the-first-observat
https://github.com/JuliaHEP
https://link.springer.com/article/10.1007/s41781-021-00053-3
https://link.springer.com/article/10.1007/s41781-021-00053-3
https://indico.cern.ch/event/1019958/timetable/#b-424630-plenary-julia-in-hep
https://indico.cern.ch/event/1074269/
https://indico.cern.ch/event/1074269/

Simple Julia code example

Open Data CMS dimuon spectrum analysisW
Uses UnROOT.jlW to read a CMS data ROOT �le.

function analyze_tree(t, maxevents = -1)
bins = 30_000 # Number of bins in the histogram

low = 0.25 # Lower edge of the histogram

up = 300.0 # Upper edge of the histogram

h = H1{Float64}(Axis(bins, low, up))
for (ievt, evt) in enumerate(t)

maxevents >= 0 && ievt > maxevents && break
evt.nMuon ==2 || continue
evt.Muon_charge[1] != evt.Muon_charge[2] || continue
dimuon_mass = m(ptetaphim(evt.Muon_pt[1], evt.Muon_eta[1], evt.Muon_phi[1],

evt.Muon_mass[1])
+ ptetaphim(evt.Muon_pt[2], evt.Muon_eta[2],

evt.Muon_phi[2], evt.Muon_mass[2]))
hfill!(h, dimuon_mass)

end
h

end

t = LazyTree(ROOTFile(fname),"Events")
h = analyze_tree(t);

5 / 15

https://opendata.cern.ch/record/22350
https://github.com/tamasgal/UnROOT.jl

Support for ROOT �le format

Currently two options available

I UnROOT.jlW written in Julia. Limited to supported class and tree
contents, but development plans to go beyond. No write support.

I Use of Python uprootW library via the Julia-PythonW transparent
interface. Read and write access. Limited to supported class and
tree contents. See also UpROOT.jlW.

6 / 15

https://github.com/tamasgal/UnROOT.jl
https://github.com/scikit-hep/uproot4
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaHEP/UpROOT.jl

Interporability with other languages

Direct call from Julia
I Python. Very well integrated in both directions, included in Jupyter

notebooks. PyCall and IJulia.

I Fortran and C: built-in ccall function, no overhead.
I call of c-function double f(double):

@ccall f(x.::Cdouble)::Cdouble

I Writing wrapper in Julia needed for a good integration.
I Julia code can also be called from C and C++ code (with a time

overhead).

Requiring wrapper code

I C++. CxxWrap.jl: glueing code to write in C++. Inspired from
Boost.PythonW like PyBind11W is.

Note: Direct C++ code call possible with old versions of Julia
(1.1.x�1.3.x) with the Cxx.jlW package. Equivalent to cppyyW.

7 / 15

https://www.boost.org/doc/libs/1_72_0/libs/python/doc/html/article.html
https://pybind11.readthedocs.io/en/stable/
https://github.com/JuliaInterop/Cxx.jl
https://cppyy.readthedocs.io

CxxWrap

How to add Julia bindings to a C++ library with CxxWrap?

I Compile a shared library, where we register the types and functions
to bind

1 or 2 line per class + 1 per function;

Behind the scene
I The shared library wraps the C++ functions/methods in C functions

in order to use the Julia built-in C call.

I The package generates (at runtime) Julia wrappers

Features
I Perfect integration, no need to write Julia wrappers;

a->f(x) maps to Julia style f(a, x)

I Mapping of single class inheritance;

I Beside the class method mapping, support mapping of pure structs
to Julia.

8 / 15

Writing the c++ glue: examples

Example

//TH1 and TH1F registration with

//inheritance specification

th1 = types.add_type<TH1>("TH1F",

jlcxx::julia_base_type<TNamed>());

th1f = types.add_type<TH1F>("TH1F",

jlcxx::julia_base_type<TH1>());

//TH1::Fill method registration

th1.method("Fill",

static_cast<Int_t (TH1::*)(Double_t) >(&TH1::Fill));

CxxWrap.jl used by the FastjetW and LCIOW Julia interfaces
developed by Jan Strube.

9 / 15

https://github.com/jstrube/FastJet.jl
https://github.com/jstrube/LCIO.jl

Writing the c++ glue: automatisation

Writing the type and function registration lines is:

I Simple

I but it can be cumbersome to cover all classes and methods of a
large library

→ Covering all the ROOT classes and methods would be a huge work

I Needs to be updated when the library API is changed.

Automatic generation of glue

I If the code is simple, then it can be automatically generated

I Automatic generation investigated with the WrapIt!
proof-of-concept project

10 / 15

WrapIt!

Principle

I Produces the glueing code from the library header �les

I Minimal con�guration

Challenges

I Interpreting content written in sophisticated language (C++20
standard: 1853 pages!)

I Header �les 6= API de�nition

Design choices

I Written in C++

I Use of LLVM/Clang
I mainly libclang: stable C API of clang libraries;
I few calls to Clang AST C++ library for few missing features of

libclang.

11 / 15

WrapIt! features

I Takes a list of header �les containing the classes and functions to
wrap.

I Adds automatically to the list all the types needed to use the
wrapped functions (argument and return types).

I Selection of classes and functions to wrap can be �ne-tuned by
providing an exclusion list.

I Maps of inheritance: max. one parent class. Selection of parent class
con�gurable.

I Supports generation of accessors for class �elds.

12 / 15

WrapIt! demo

Based on ex002-ROOTW example

We will do the following from Julia:

I Book a TH1D histogram;

I Fill the histogram with random numbers;

I Fit the histogram;

I Display the histogram on Screen;

I Save in a .root �le the histogram and the TCanvas;

I Save the Figure as an image �le.

13 / 15

https://github.com/grasph/wrapit/tree/ROOT-Wkshop-2022/examples/ex002-ROOT

Towards a ROOT-Julia interface

What is missing to generate a complete ROOT framework
Julia-binding?

I Split of generated code in several �les to reduce resources to compile
it;

I Needs to improve WrapIt! code: missing features discovered while
adding more class to wrap;

I Graphic support in Jupyter to be added;

I Support to read/write TTree needs to be debugged. Not clear how
much development this support will require.

I Support of Julia to write functions for RDataFrame::Filter() and
RDataFrame::De�ne(). Not clear yet how this should be
implemented.

14 / 15

Conclusions

I Julia is ideal for NHEP data analysis: combines fast coding and fast
running;

I Julia binding to ROOT is on the way
I Based on automatic code generation to ease the maintenance.
I Well integrated interface out-of-the box, although we need to

understand how it will be for TTree and RNtuple I/O.

15 / 15

Appendix

I

Programming with Julia is easy

I Code syntax and grammar is similar to Pythons. No
std::map<std:string, std::vector<MyClass�. . . , no compilation step.

I Dynamic type system

I Easy to learn

I Syntactic sugars similar to Python for a concise code: list
comprehension, a < b < c, 1_000_000, support of symbols for
variables. . .

and more: e.g. a function call is �vectorized� (ala numpy) with a
simple dot, f.(x)

I Interactive help, nice tools to debug, to optimise code, for
introspection.

II

What makes Julia unique
Designed from the very beginning with the goal of conciliating high performance computing with

easy coding

Just-in-time compilation

I Provides both fast execution and a good interactive experience

Support for Jupyter notebook

I (Ju stands for Julia).

A dynamic type system

I Speci�cation of variable and function argument types optional.

Its dynamic multiple dispatch paradigm

I Functions can be implemented once and support many argument types;

I Specialized implementations can be provided for a speci�c type (or group
of types) of one argument or more.

I Achieve in a much simpler, more consistent and more complete manner
what C++ provides with templates+overloading+overriding.

III

Programming in a community

I Internet search engine and stack over�ow play is an essential
ingredient in nowadays programming work�ow.

I Julia is already widespread enough, to �nd all the information on the
Internet.

I In addition to usual resource, Julia has dedicated fora on
DiscourseW, SlackW, and ZulipW with an active and friendly
community.

Go to https://www.duckduckgo.com or your preferred search engine
and make a try.

IV

https://discourse.julialang.org/
https://julialang.org/slack/
https://julialang.zulipchat.com/
https://www.duckduckgo.com

A rich ecosystem

I Large set of libraries and active development
I Julia is �rstly used by scienti�c community ⇒ oriented to our needs

I Machine Learning, GPU, Plotting, DataFrames, etc. . .

I I did the following exercise during the PyHEP2021 workshopW: I've
looked for a Julia equivalent each time a speaker mention a Python
library (apart from HEP speci�c ones).
I Found a Julia equivalent of 16 out of the 18 mentioned libraries:

missing one was a binding to FreeCAD (which is in discussion) and
the software testing library with a speci�c technique (Hypothesis).

V

https://indico.cern.ch/event/1019958/

Develoment tools for Julia

IDE
I Emacs and vim support

I Atom and VScode support. Many features. Code can be run and
debugged with the IDE, with support for plots.

Notebooks
I Jupyter

I PlutoW. A new generation notebook with automatic update of cells.

Debugger

I Debugger, Rebugger, Juno debugger (for Atom IDE)

Code optimisation

I Integrates nice and easy-to-use tools to optimise code performance.

VI

https://github.com/fonsp/Pluto.jl

Package installation

Package installation
Python made it easy with Conda and pip. It's even easier in Julia

I A standard library part of the Julia installation

I Give instructions to the user, when he or she tries to import a
missing package.

VII

Comparison with Python (1/2)

The main practical di�erence with Python is that Julia code
runs faster.
I Canfranc DQM code was originally written to Python.

I Python code needs to be written in a certain way to get the best
performance (but still worst than Fortran/C/C++/Julia.)

⇒ Has required a substantial e�ort when writing the DQM code.

I The code was rewritten in C, because of performance issue in terms
of running speed and memory usage, despite use of state-of-the art
technics for performance (Numba, Numpy).

VIII

Comparison with Python (2/2)

Loops are not issue with Julia

C/C++ Python Julia
1.0ms 44ms 1.0ms

I As simple as Python, as fast as C/C++

IX

	Appendix

