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Introduction

De�nitions
I Julia: a great programming language that allies performance with

ease of programming: may supersede the current Python ⊕ C++
HEP paradigm.

I C++: a high-performance language we all know,

I ROOT: a great and wide-used NHEP data analysis framework based
on C++ and we all use.

This talk

I will address the interface between the three.
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Introduction to Julia
Solving the two-language problem

Fast/easy coding Fast running
Python ⇔ C/C++

⇒ E�ect: mix of languages and going back-and-forth between them

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah tackled the
problem in 2009

I Birth of Julia, release 0.1 in 2013, a language that provides both fast
coding and running

I Breakthrough recognised by 2 awards: James H. Wilkinson Prize in
Numerical Analysis and Scienti�c in 2019W, IEEE Computer Society
Sidney Fernbach Award in 2019W

Julia groups advantages of Python and C++ in a single
programming language
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https://www.ll.mit.edu/news/wilkinson-prize-goes-developers-flexible-julia-programming-language
https://www.ll.mit.edu/news/wilkinson-prize-goes-developers-flexible-julia-programming-language
https://www.computer.org/press-room/2019-news/2019-ieee-fernbach-award-edelman
https://www.computer.org/press-room/2019-news/2019-ieee-fernbach-award-edelman


Introduction to Julia: use in NHEP

I KM3Net high-level software has a Julia environment in development in addition
to the Python one (reported hereW)

I The LEGEND 0νββ experiment uses two parallel stacks, the primary in Python
and the secondary (for validation and experimentation) in Julia. C++ is used for
Geant-4 simulation software (reported hereW)

I LHCb analysis that leads to the �rst observation of the Ω−
b → Ξ+

c K
−π− decay

(10.1103/PhysRevD.104.L091102W) uses Julia: see Julia for data analysis in
High Energy Physics, Mikael MikhasenkoW. M. Mikkhasenko has used Julia also
for a JPAC analysis (doi:10.1103/PhysRevD.98.096021W) and a COMPAS
analysis (doi:10.1103/PhysRevLett.127.082501W) as reported hereW.

I Julia HEP organisation on GithubW

I Paper demonstrating the competitiveness of Julia for HEP published in last April
Performance of Julia for High Energy Physics Analyses, Marcel Stanitzki and Jan
StrubeW

I Julia-in-HEP session of PyHEP 2021 workshopW, HSF Julia for HEP
Mini-worksopW

Interest of Julia in NHEP is growing.
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https://indico.cern.ch/event/1019958/timetable/#9-python-based-tools-and-frame
https://indico.cern.ch/event/1074269/#4-case-study-julia-in-a-workgr
htpps://doi.org/10.1103/PhysRevD.104.L091102
https://live.juliacon.org/talk/TRMZFB
https://live.juliacon.org/talk/TRMZFB
https://doi.org/10.1103/PhysRevD.98.096021
https://doi.org/10.1103/PhysRevLett.127.082501
https://indico.cern.ch/event/1074269/#5-julia-and-the-first-observat
https://github.com/JuliaHEP
https://link.springer.com/article/10.1007/s41781-021-00053-3
https://link.springer.com/article/10.1007/s41781-021-00053-3
https://indico.cern.ch/event/1019958/timetable/#b-424630-plenary-julia-in-hep
https://indico.cern.ch/event/1074269/
https://indico.cern.ch/event/1074269/


Simple Julia code example

Open Data CMS dimuon spectrum analysisW
Uses UnROOT.jlW to read a CMS data ROOT �le.

function analyze_tree(t, maxevents = -1)
bins = 30_000 # Number of bins in the histogram

low = 0.25 # Lower edge of the histogram

up = 300.0 # Upper edge of the histogram

h = H1{Float64}(Axis(bins, low, up))
for (ievt, evt) in enumerate(t)

maxevents >= 0 && ievt > maxevents && break
evt.nMuon ==2 || continue
evt.Muon_charge[1] != evt.Muon_charge[2] || continue
dimuon_mass = m(ptetaphim(evt.Muon_pt[1], evt.Muon_eta[1], evt.Muon_phi[1],

evt.Muon_mass[1])
+ ptetaphim(evt.Muon_pt[2], evt.Muon_eta[2],

evt.Muon_phi[2], evt.Muon_mass[2]))
hfill!(h, dimuon_mass)

end
h

end

t = LazyTree(ROOTFile(fname),"Events")
h = analyze_tree(t);
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https://opendata.cern.ch/record/22350
https://github.com/tamasgal/UnROOT.jl


Support for ROOT �le format

Currently two options available

I UnROOT.jlW written in Julia. Limited to supported class and tree
contents, but development plans to go beyond. No write support.

I Use of Python uprootW library via the Julia-PythonW transparent
interface. Read and write access. Limited to supported class and
tree contents. See also UpROOT.jlW.
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https://github.com/tamasgal/UnROOT.jl
https://github.com/scikit-hep/uproot4
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaHEP/UpROOT.jl


Interporability with other languages

Direct call from Julia
I Python. Very well integrated in both directions, included in Jupyter

notebooks. PyCall and IJulia.

I Fortran and C: built-in ccall function, no overhead.
I call of c-function double f(double):

@ccall f(x.::Cdouble)::Cdouble

I Writing wrapper in Julia needed for a good integration.
I Julia code can also be called from C and C++ code (with a time

overhead).

Requiring wrapper code

I C++. CxxWrap.jl: glueing code to write in C++. Inspired from
Boost.PythonW like PyBind11W is.

Note: Direct C++ code call possible with old versions of Julia
(1.1.x�1.3.x) with the Cxx.jlW package. Equivalent to cppyyW.
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https://www.boost.org/doc/libs/1_72_0/libs/python/doc/html/article.html
https://pybind11.readthedocs.io/en/stable/
https://github.com/JuliaInterop/Cxx.jl
https://cppyy.readthedocs.io


CxxWrap

How to add Julia bindings to a C++ library with CxxWrap?

I Compile a shared library, where we register the types and functions
to bind

1 or 2 line per class + 1 per function;

Behind the scene
I The shared library wraps the C++ functions/methods in C functions

in order to use the Julia built-in C call.

I The package generates (at runtime) Julia wrappers

Features
I Perfect integration, no need to write Julia wrappers;

a->f(x) maps to Julia style f(a, x)

I Mapping of single class inheritance;

I Beside the class method mapping, support mapping of pure structs
to Julia.
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Writing the c++ glue: examples

Example

//TH1 and TH1F registration with

//inheritance specification

th1 = types.add_type<TH1>("TH1F",

jlcxx::julia_base_type<TNamed>());

th1f = types.add_type<TH1F>("TH1F",

jlcxx::julia_base_type<TH1>());

//TH1::Fill method registration

th1.method("Fill",

static_cast<Int_t (TH1::*)(Double_t) >(&TH1::Fill));

CxxWrap.jl used by the FastjetW and LCIOW Julia interfaces
developed by Jan Strube.
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https://github.com/jstrube/FastJet.jl
https://github.com/jstrube/LCIO.jl


Writing the c++ glue: automatisation

Writing the type and function registration lines is:

I Simple

I but it can be cumbersome to cover all classes and methods of a
large library

→ Covering all the ROOT classes and methods would be a huge work

I Needs to be updated when the library API is changed.

Automatic generation of glue

I If the code is simple, then it can be automatically generated

I Automatic generation investigated with the WrapIt!
proof-of-concept project
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WrapIt!

Principle

I Produces the glueing code from the library header �les

I Minimal con�guration

Challenges

I Interpreting content written in sophisticated language (C++20
standard: 1853 pages!)

I Header �les 6= API de�nition

Design choices

I Written in C++

I Use of LLVM/Clang
I mainly libclang: stable C API of clang libraries;
I few calls to Clang AST C++ library for few missing features of

libclang.
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WrapIt! features

I Takes a list of header �les containing the classes and functions to
wrap.

I Adds automatically to the list all the types needed to use the
wrapped functions (argument and return types).

I Selection of classes and functions to wrap can be �ne-tuned by
providing an exclusion list.

I Maps of inheritance: max. one parent class. Selection of parent class
con�gurable.

I Supports generation of accessors for class �elds.
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WrapIt! demo

Based on ex002-ROOTW example

We will do the following from Julia:

I Book a TH1D histogram;

I Fill the histogram with random numbers;

I Fit the histogram;

I Display the histogram on Screen;

I Save in a .root �le the histogram and the TCanvas;

I Save the Figure as an image �le.
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https://github.com/grasph/wrapit/tree/ROOT-Wkshop-2022/examples/ex002-ROOT


Towards a ROOT-Julia interface

What is missing to generate a complete ROOT framework
Julia-binding?

I Split of generated code in several �les to reduce resources to compile
it;

I Needs to improve WrapIt! code: missing features discovered while
adding more class to wrap;

I Graphic support in Jupyter to be added;

I Support to read/write TTree needs to be debugged. Not clear how
much development this support will require.

I Support of Julia to write functions for RDataFrame::Filter() and
RDataFrame::De�ne(). Not clear yet how this should be
implemented.
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Conclusions

I Julia is ideal for NHEP data analysis: combines fast coding and fast
running;

I Julia binding to ROOT is on the way
I Based on automatic code generation to ease the maintenance.
I Well integrated interface out-of-the box, although we need to

understand how it will be for TTree and RNtuple I/O.
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Appendix

I



Programming with Julia is easy

I Code syntax and grammar is similar to Pythons. No
std::map<std:string, std::vector<MyClass�. . . , no compilation step.

I Dynamic type system

I Easy to learn

I Syntactic sugars similar to Python for a concise code: list
comprehension, a < b < c, 1_000_000, support of symbols for
variables. . .

and more: e.g. a function call is �vectorized� (ala numpy) with a
simple dot, f.(x)

I Interactive help, nice tools to debug, to optimise code, for
introspection.
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What makes Julia unique
Designed from the very beginning with the goal of conciliating high performance computing with

easy coding

Just-in-time compilation

I Provides both fast execution and a good interactive experience

Support for Jupyter notebook

I (Ju stands for Julia).

A dynamic type system

I Speci�cation of variable and function argument types optional.

Its dynamic multiple dispatch paradigm

I Functions can be implemented once and support many argument types;

I Specialized implementations can be provided for a speci�c type (or group
of types) of one argument or more.

I Achieve in a much simpler, more consistent and more complete manner
what C++ provides with templates+overloading+overriding.
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Programming in a community

I Internet search engine and stack over�ow play is an essential
ingredient in nowadays programming work�ow.

I Julia is already widespread enough, to �nd all the information on the
Internet.

I In addition to usual resource, Julia has dedicated fora on
DiscourseW, SlackW, and ZulipW with an active and friendly
community.

Go to https://www.duckduckgo.com or your preferred search engine
and make a try.
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https://discourse.julialang.org/
https://julialang.org/slack/
https://julialang.zulipchat.com/
https://www.duckduckgo.com


A rich ecosystem

I Large set of libraries and active development
I Julia is �rstly used by scienti�c community ⇒ oriented to our needs

I Machine Learning, GPU, Plotting, DataFrames, etc. . .

I I did the following exercise during the PyHEP2021 workshopW: I've
looked for a Julia equivalent each time a speaker mention a Python
library (apart from HEP speci�c ones).
I Found a Julia equivalent of 16 out of the 18 mentioned libraries:

missing one was a binding to FreeCAD (which is in discussion) and
the software testing library with a speci�c technique (Hypothesis).
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https://indico.cern.ch/event/1019958/


Develoment tools for Julia

IDE
I Emacs and vim support

I Atom and VScode support. Many features. Code can be run and
debugged with the IDE, with support for plots.

Notebooks
I Jupyter

I PlutoW. A new generation notebook with automatic update of cells.

Debugger

I Debugger, Rebugger, Juno debugger (for Atom IDE)

Code optimisation

I Integrates nice and easy-to-use tools to optimise code performance.
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https://github.com/fonsp/Pluto.jl


Package installation

Package installation
Python made it easy with Conda and pip. It's even easier in Julia

I A standard library part of the Julia installation

I Give instructions to the user, when he or she tries to import a
missing package.
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Comparison with Python (1/2)

The main practical di�erence with Python is that Julia code
runs faster.
I Canfranc DQM code was originally written to Python.

I Python code needs to be written in a certain way to get the best
performance (but still worst than Fortran/C/C++/Julia.)

⇒ Has required a substantial e�ort when writing the DQM code.

I The code was rewritten in C, because of performance issue in terms
of running speed and memory usage, despite use of state-of-the art
technics for performance (Numba, Numpy).
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Comparison with Python (2/2)

Loops are not issue with Julia

C/C++ Python Julia
1.0ms 44ms 1.0ms

I As simple as Python, as fast as C/C++
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