
RNTuple – The Next-Generation TTree

Jakob Blomer, Philippe Canal, Javier Lopez Gomez
ROOT Workshop 2022, Fermilab

What is RNTuple?

Based on 25+ years of TTree experience, RNTuple is a redesigned I/O subsystem aiming at

• Less disk and CPU usage for the same data content

• 25% smaller files, ×2–5 better single-core performance
• 10 GB/s per box and 1 GB/s per core sustained end-to-end throughput

(compressed data to histograms)

• Systematic use of exceptions to prevent silent I/O errors

• Efficient support of modern hardware (built for multi-threading and async I/O)

• Native support for object stores (see later)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

LS 2 LHC Run 3 LS 3 Run 4 (HL-LHC)

RNTuple work in progress in ROOT::Experimental

LS 2

RNTuple goes production, adoption phase

RNTuple – ROOT Workshop 2022 1 / 15

What is RNTuple?

Based on 25+ years of TTree experience, RNTuple is a redesigned I/O subsystem aiming at

• Less disk and CPU usage for the same data content

• 25% smaller files, ×2–5 better single-core performance
• 10 GB/s per box and 1 GB/s per core sustained end-to-end throughput

(compressed data to histograms)

• Systematic use of exceptions to prevent silent I/O errors

• Efficient support of modern hardware (built for multi-threading and async I/O)

• Native support for object stores (see later)

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

LS 2 LHC Run 3 LS 3 Run 4 (HL-LHC)

RNTuple work in progress in ROOT::Experimental

LS 2

RNTuple goes production, adoption phase

Note: TTree remains available in

ROOT but the focus of attention

will gradually shift to RNTuple

RNTuple – ROOT Workshop 2022 1 / 15

What are the benefits (I)?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
kB

 /
ev

en
t

Size on disk, CMS Higgs4Leptons (84 branches)

RNTuple

TTree

Parquet

HDF5/row

HDF5/column

Size on disk, CMS Higgs4Leptons (84 branches) Code

ACAT’21

RNTuple – ROOT Workshop 2022 2 / 15

https://github.com/jblomer/iotools/tree/acat21/compare
https://indico.cern.ch/event/855454/contributions/4596512/

What are the benefits (II)?

0

0.2

0.4

0.6

0.8

1

un
co

m
pr

es
se

d
G

B
 /

s
CMS Higgs4Leptons (10/84 branches)

HDF5 HDF5

SSD Ceph-FS

CMS Higgs4Leptons (10/84 branches)

0

0.5

1

1.5

2

2.5

3

un
co

m
pr

es
se

d
G

B
 /

s

 LHCb B2HHH (10/26 branches)

SSD Ceph-FS

RNTuple
TTree
Parquet
HDF5/row
HDF5/column

 LHCb B2HHH (10/26 branches) Code

ACAT’21

RNTuple – ROOT Workshop 2022 3 / 15

https://github.com/jblomer/iotools/tree/acat21/compare
https://indico.cern.ch/event/855454/contributions/4596512/

How can I try it?

• Take a ROOT package built with C++17 for access to the experimental classes

• Start with tutorials in tutorials/v7/ntuple, e. g. ntpl004_dimuon.C:

RNTuple – ROOT Workshop 2022 4 / 15

RNTuple data in the browser

RNTuple – ROOT Workshop 2022 5 / 15

Will I need to change my code?

• For RDF analyses: one line

auto rdf = ROOT::Experimental::MakeNTupleDataFrame("Events", "data.root");

• ROOT’s tooling for ROOT files

• RBrowser integration: available
• hadd support: coming this year
• Disk to disk converter TTree → RNTuple: coming this year

• Writing and RNTuple native reading: new API following modern C++ core guidelines

RNTuple – ROOT Workshop 2022 6 / 15

RNTuple compile-time type-safe API write example

// Unique pointer to a new data schema
auto model = RNTupleModel::Create();
// Shared pointer to an std::vector<float>
auto fieldVpx = model->MakeField<std::vector<float>>("vpx");

auto ntplWriter = RNTupleWriter::Recreate(std::move(model), "Events", "data.root");

for (int i = 0; i < 1000; i++) {
int npx = gRandom->Integer(15);
fieldVpx->clear();
for (int j = 0; j < npx; ++j)

fieldVpx->emplace_back(gRandom->Gaus(0, 1));
ntplWriter->Fill();

}

// Auto-save and close when ntplWriter goes out of scope

RNTuple – ROOT Workshop 2022 7 / 15

RNTuple compile-time type-safe API write example

// Unique pointer to a new data schema
auto model = RNTupleModel::Create();
// Shared pointer to an std::vector<float>
auto fieldVpx = model->MakeField<std::vector<float>>("vpx");

auto ntplWriter = RNTupleWriter::Recreate(std::move(model), "Events", "data.root");

for (int i = 0; i < 1000; i++) {
int npx = gRandom->Integer(15);
fieldVpx->clear();
for (int j = 0; j < npx; ++j)

fieldVpx->emplace_back(gRandom->Gaus(0, 1));
ntplWriter->Fill();

}

// Auto-save and close when ntplWriter goes out of scope

For use in frameworks, a

void * API exists as well,

where types are passed as

strings

RNTuple – ROOT Workshop 2022 7 / 15

Advanced features

• Native object store support

• Intel DAOS HPC object store: available
• S3 cloud storage: coming

• Zero-copy merging on modern file systems: R&D

• Direct data transfer SSD → GPU & GPU accelerated decompression: R&D

RNTuple – ROOT Workshop 2022 8 / 15

HPC object store motivation

Issues with traditional storage stack. . .

• Designed for spinning disks (few IOPS): I/O coalescing, buffering, etc., became less relevant for
modern devices → overhead

• Limitations in scalability for parallel filesystems

RNTuple – ROOT Workshop 2022 9 / 15

HPC object store motivation

Issues with traditional storage stack. . .

• Designed for spinning disks (few IOPS): I/O coalescing, buffering, etc., became less relevant for
modern devices → overhead

• Limitations in scalability for parallel filesystems
Hmmm... This

situation can be

improved!

RNTuple – ROOT Workshop 2022 9 / 15

What is DAOS?

• Modern fault-tolerant object store optimized for high bandwidth, low latency, and high IOPS.
Foundation of the Intel exascale storage stack

• Optimal use of storage-class memory and NVMe SSDs

• I/O of Argonne’s Aurora1 supercomputer will be based on it

• Experience acquired supporting this in RNTuple can be reused for other object stores, e.g. Amazon
S3

While DAOS has a compatibility layer, e.g. a FUSE filesystem, RNTuple provides a backend that delivers
high performance.

1https://alcf.anl.gov/aurora
RNTuple – ROOT Workshop 2022 10 / 15

How may object stores be used in HEP?

• Next-generation datacenters may not use a filesystem to store to-be-processed / processed data

• In HEP, object stores will not probably be the permanent way of storing data; instead, we see them
as a temporary storage, e.g. for high-throughput distributed analysis

• Thus, quick population of object store with data is also important

RNTuple – ROOT Workshop 2022 11 / 15

DAOS 101

DAOS pool DAOS container
key value
.

key value
.

DAOS object

• Object: to put it short, a Key–Value store with locality

• Object class: determines redundancy, e.g. replication/erasure code

RNTuple – ROOT Workshop 2022 12 / 15

Do I have to change my code?

Only requires the replacement of the file path

auto ntuple = RNTupleReader::Open("DecayTree",
"./B2HHH~zstd.ntuple");

to a daos:// URI

auto ntuple = RNTupleReader::Open("DecayTree",
"daos://<POOL UUID>/<CONTAINER UUID>");

RNTuple – ROOT Workshop 2022 13 / 15

Distributed RDataFrame + DAOS throughput

Nodes

0

5

10

15

20

25

30

35

40

P
ro

ce
ss

in
g

th
ro

ug
hp

ut
 [G

B
/s

]

1 2 3 4 5 6 7

• 800 GB dataset based on LHCB opendata
B2HHH

• Processed using distributed RDataFrame +
RNTuple DAOS backend

• 70% of the nominal bandwidth (48 GB/s) of
the cluster achieved

RNTuple – ROOT Workshop 2022 14 / 15

http://opendata.cern.ch/record/4902
http://opendata.cern.ch/record/4902

Summary

ROOT RNTuple aims at a leap in data throughput

• Expect smaller files and significantly faster reads compared to TTree

• Modern and robust API

• Capable of making efficient use of modern devices and storage systems
(such as SSD, object stores, many cores)

RNTuple is work in progress in ROOT::Experimental.
(The on-disk format is still subject to small changes!)

We are happy to get your feedback!

RNTuple – ROOT Workshop 2022 15 / 15

Backup Slides

Breakdown of the RNTuple on-disk format

.

Header Page

Cluster

Cluster Group

FooterPage List

struct Event {
int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

Cluster

• Block of consecutive complete events

• Defaults to 50 MB compressed

Page

• Unit of (de-)compression and (un-)packing

• Defaults to 64 kB uncompressed

RNTuple Class Layering

Storage layer / byte ranges
RPageSource, RPageSink, RCluster

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, . . .)

grouped into (compressed) pages and clusters
RColumn, RPage

Logical layer / C++ objects
Mapping of C++ types onto columns

e.g. std::vector<float> ↦→ index column and a value column
RField, RNTupleModel, REntry

Event iteration
Reading and writing in event loops

RDataFrame, RNTupleReader, RNTupleView, RNTupleWriter

• Storage access
• Physical: ROOT file container,

raw file, object store
• Virtual: “friend” and “chain”,

buffered writes

• Serialization of simple types and
STL collections built-in – can be
read without libCore

RNTuple Class Layering

Storage layer / byte ranges
RPageSource, RPageSink, RCluster

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, . . .)

grouped into (compressed) pages and clusters
RColumn, RPage

Logical layer / C++ objects
Mapping of C++ types onto columns

e.g. std::vector<float> ↦→ index column and a value column
RField, RNTupleModel, REntry

Event iteration
Reading and writing in event loops

RDataFrame, RNTupleReader, RNTupleView, RNTupleWriter

• Storage access
• Physical: ROOT file container,

raw file, object store
• Virtual: “friend” and “chain”,

buffered writes

• Serialization of simple types and
STL collections built-in – can be
read without libCore

Approximate class translation:

TTree ≈ RNTupleReader
RNTupleWriter

TTreeReader ≈ RNTupleView
TBranch ≈ RField
TBasket ≈ RPage
TTreeCache ≈ RClusterPool

libRNTupleLite

• The lite libraries are built just like any other
ROOT libraries in ROOT proper (including
modules, dictionaries etc)

• The lite libraries do not use any infrastructure
from libCore but only from
libROOTFoundation

• Contents of the lite libraries:

• RIOLite: RRawFile without support for
plugins, i. e. only local files

• ROOTNTupleLite: RPageSource,
RNTupleDescriptor (read-only)

RNTuple type system

The RNTuple I/O supports arbitrary combinations of a well-defined set of C++ types

• float, double

• int, unsigned int: 1, 2, and 4 bytes long

• std::string

• bool

• std::vector, ROOT::RVec

• std::array

• std::variant

• Classes with dictionaries incl. (multiple) inheritance but w/o polymorphism

• Coming: enums, std::pair, std::set, intra-event references

I/O features: the essentials

Feature Status

Architecture-independent encoding available
C++ and Python support available (w/o pythonizations)
Transparent compression available
Fully checksummed coming soon
Columnar access available
Horizontal data combinations (friends) available (aligned only)
Vertical data combinations (chains) coming soon
Merging without uncompressing data coming soon
RDataFrame integration available
RBrowser support available
Remote access: HTTP and XRootD support available
Async reading, parallel decompression available
Multi-threaded writes available (only compression parallelized)
Schema evolution coming soon
On-demand schema extension (backfilling) coming soon
Support for application-defined metadata coming soon

DAOS single-node throughput (HPE)

128 512 896 1280 1664 2048
RNTuple page size

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
hr

ou
gh

pu
t (

G
B

/s
)

Write throughput, LHCB run 1 opendata B2HHH

128 512 896 1280 1664 2048
RNTuple page size

0.5

1

1.5

2

2.5

3

T
hr

ou
gh

pu
t (

G
B

/s
)

Read throughput, LHCB run 1 opendata B2HHHRead throughput, LHCB run 1 opendata B2HHH

dfuse (DAOS compatibility layer)

RNTuple/DAOS backend

	Appendix
	Backup Slides

