
https://root.cern

ROOT
Data Analysis Framework

ROOT Core I/O and TTree
STATUS

Philippe Canal and Jakob Blomer for the ROOT team

1

https://root.cern

What’

🔹 New Features in Core I/O
🔹 Other Improvements in Core I/O
🔹 Concurrency Improvements
🔹 TTree Improvements
🔹 Future Development in Core I/O

2

🔹 Support for ZSTD and LZ4 compression algorithms.

🔹 Better interface to retrieve object from a TFile:

🔹 Support for XRootD local redirection.

🔹 Support for maps with string as a key in JSON output

🔹 Creation of fully reproducible TFile

●

● No date info in keys and directory. No TUUID.
● But no support for TRef in such files.

auto obj = directory->Get<MyClass>("some object");

New Features in Core I/O

3

TFile *f = TFile::Open("name.root?reproducible","RECREATE","File title");

Other Improvements in Core I/O

🔹 Several deficiencies solved in I/O customization rules

🔹 Significantly improved the scaling of hadd
tear-down/cleanup-phase in the presence of large number
histograms and in the presence of large number of
directories.

4

Concurrency Improvements
🔹 Many improvements including

● Thread scalability of TRef, TStreamerInfo

● Exclusive use of the global lock is strongly reduced or migrated to
finer grained read and write locks

● Scaling and stability of TBufferMerger feature.

● Addition of TMPFile implement the file merging over MPI.

🔹 Streaming now scales linearly with number of threads
● TFile has a fully scalable mode (essentially no locks)

● TTree with TBufferMerger can be challenged by very high input rate.
Reading of single TTree limited by decompression of largest buffers

5

TTree Improvements

🔹 Allow creation of TTree with strictly one basket per branch
per cluster:

● TTree leaflist extended to 'f' (Float16_t), 'd' (Double32_t) , ‘G’ (long) and ‘g’
(unsigned long)

🔹 Bulk I/O
● New interface to read whole basket of data a time
● Currently resolving issues related to indices and content not fitting in the

same number of baskets.
6

tree->SetBit(TTree::kOnlyFlushAtCluster);

Future Development in Core I/O

1. Further Thread-safety and performance improvements

2. TBufferFile larger than 1GB

3. Further Schema Evolution Improvement

4. Incorporate lossy compression engine (Accelogic)

7

Backup slides

8

🔹 Speed-up startup, in particular in case of no or poor
network accessibility

9

File Format Essential Properties

Robustness Protection against media failure & API misuse

Expressiveness Support for events with nested variable length collections

Speed Columnar layout, merge-friendly, sophisticated I/O scheduling

Stability Backwards and forwards compatibility, hooks for schema evolution

Usability Accessible to novice and expert programmers

Concurrency Facilitate concurrent reading/writing (merging) and (de-)compression

Integration Support for HEP-specific, HPC, and Cloud storage and data mgmt systems

10

Facets of a full I/O system

In addition to deserializing file contents, the full I/O system has many more aspects, such as

🔹 Parallel and distributed reading & writing

🔹 I/O scheduling (read-ahead, request coalescing, etc)

🔹 Beyond file system I/O: HTTP, XRootD, object stores

🔹 Schema evolution

🔹 Data set combinations: chains, friends, indexes, merging

🔹 Complex object hierarchies (e.g. for ESD EDMs)

🔹 User customizations

● E.g. skip “transient data members”

● I/O customization rule (transformation of data)

11

12

HEP Event Data I/O

Why invest in a tailor-made I/O system

● Capable of storing the HEP event data model:
nested, inter-dependent collections of data points

● Performance-tuned for HEP analysis workflow (columnar
binary layout, custom compression etc.)

● Automatic schema generation and evolution for
C++ (via cling) and Python (via cling + PyROOT)

● Integration with federated data management tools
(XRootD etc.)

● Long-term maintenance and support

TTree & RNTuple
Example EDM

The ROOT File

🔹 In ROOT, objects are written in files (“TFile”)
🔹 TFiles are binary and have: a header, records and can be compressed

(transparently for the user)
🔹 TFiles have a logical “file system like” structure

● e.g. directory hierarchy
🔹 TFiles are self-descriptive:

● Can be read without the code of the objects streamed into them
● E.g. can be read from JavaScript

13

ROOT File Description

14

ROOT File Specification

15

Event Data and ROOT Files

🔹 A ROOT file can be seen as a hierarchically organized container of objects
● E.g. a file can contain directories with histograms

🔹 In addition, ROOT files can also contain event data
● E.g., a series of TEvent objects for a user-defined TEvent class

🔹 Event data stored in a TTree (or RNTuple, see later) is usually written as a set
of many objects

🔹 TTree and RNTuple have a custom, internal serialization format
(columnar layout)

🔹 A binary format within the TFile binary format

16

Anatomy of a Tree

17

Branch #1
Entries 0 .. N-1

File
Header

#2
0 .. N-1

#3
0 .. N-1

#1
N ... 2N-1

#2
N .. 2N-1

#3
N .. 2N-1

Cluster Cluster

TTree
Meta Data

File
Schema
Evolution
Support

#1
4N ...

#2
4N ...

#3
4N …

Cluster
#1

3N ...

#2
3N
…

#3
3N
…

Cluster

#1
2N ... 3N-1

#2
2N .. 3N-1

#3
2N .. 3N-1

Cluster

#1
5N ...

#2
5N ...

#3
5N ...

Cluster

#1
6N ... 6.9*N-1

#2
6N …

#3
6N …

Cluster
#1

7N …
#2

7N …

#3
7N
…

Cluster
#1

6.9*N ...

BasketBasket Basket Basket

ROOT Data Access Options

🔹 ROOT can read, write, and represent data in C++

🔹 ROOT can read, write, and represent data in Python through pyROOT
(dynamic binding between C++ and Python)
● Can also export ROOT trees to numpy arrays

🔹 ROOT can read and represent trees and the most common classes
(histograms, graphs, etc.) in JavaScript with JSROOT
● Can also export objects in JSON

18

https://root.cern/doc/master/df026__AsNumpyArrays_8py.html
https://root.cern.ch/js/
https://root.cern.ch/doc/master/classTBufferJSON.html

3rd Party Implementations of ROOT I/O

🔹 There are several projects that re-implement parts of the ROOT file
format
● Julia: unroot
● Python: uproot
● Go: hep/groot
● Java/Scala: FreeHEP rootio
● Rust: alice-rs/root-io

🔹 Typically supported features: reading of simple objects (histograms)
and trees with a simple structure (numerical types and vectors
thereof)

19

https://github.com/tamasgal/UnROOT.jl
https://uproot.readthedocs.io/en/latest/
http://go-hep.org/x/hep/groot
https://java.freehep.org/freehep-rootio/index.html
https://github.com/cbourjau/alice-rs/tree/master/root-io

ROOT I/O: Support

Full support by the ROOT Team:

🔹 I/O through the ROOT C++ library

🔹 pyROOT

🔹 Conversion of simple structures to numpy arrays

🔹 JSROOT

🔹 JSON serialization of objects

🔹 In the future: C API provided by RNTupleLite

Indirect support (“support the maintainers”)

🔹 Third-party implementation of the binary format (uproot, unroot, Java, Go, ...)
20

