
RooFit in 2022

Jonas Rembser (CERN, EP-SFT) for the ROOT team

11 May 2022, ROOT Users Workshop

Introduction

○ RooFit: C++ library for statistical data analysis in ROOT
○ Model specification and fitting to data (baseline RooFit)
○ Implements common statistical tests (RooStats)
○ Includes tools to specify complex binned models (HistFactory)

○ Recent development focused on:
○ Performance boost (preparing for larger datasets of HL-LHC)
○ More user friendly interfaces and high-level tools

○ Topics of today:
○ Overview of development areas and recent highlights
○ Outlook on new developments

2

RooFit development areas

In which areas does RooFit evolve (besides bugfixes)?

○ Not all areas are covered with the same level of activity
○ Some areas started to be covered only recently (automatic differentiation, interoperability)

Vectorization Gradient parallelization

GPU Implementation Pythonizations

Higher-level interfaces

Fit precision and correctness

Targeted optimizations for
expensive workflows

Automatic differentiation Interoperability

Performance optimization User interface and experience

Testing and benchmarking

3

New RooFit computation backend

○ Old way of evaluating RooFit models via recursion unsuitable for
heterogeneous computing

○ New BatchMode(“cpu”) and “cuda” computation backends for
pdf.fitTo()

○ RooFit computation graph reorganized as a sequence of
functions with no side effects, evaluated by the RooFitDriver
○ Bypass internal caching in RooFit objects
○ Opened up new opportunities

for parallelization and optimization
○ Broadcasting of values to

enable vectorization

GPU ImplementationVectorization

AddPdf

Gaussian Exponential

xμ cσ

AddPdf

Gaussian

Exponential

μ

σ

x

c

Gaussian integral

Exponential integral

original computation graph

“compiled”
computation
graph

4

Status of RooFit’s BatchMode

○ Architecture-specific accelerator libraries for key functions
○ Optimal one loaded at runtime, given current architecture
○ Now also includes GPU version! Try it out with pdf.fitTo(model, BatchMode(“cuda”))

○ Multithreading via ROOT::EnableImplicitMT()

○ Huge speedup for unbinned fits with many events

○ For large computation
graphs with few events,
BatchMode still has
larger overhead than
recursive evaluation

○ Goal for 6.28:
Make BatchMode strictly
Faster for any possible model

GPU ImplementationVectorization

5

RooFit pythonizations

6

● PyROOT bindings more pythonic in 6.26
● Now you can for example:

○ use Python keyword arguments instead
of RooFit command arguments

○ pass around Python sets or lists instead of
RooArgSet or RooArgList

○ pass Python dictionaries to functions that
take std::map<>

○ implicitly convert floats to RooConstVar in
RooArgList/Set constructors

● All pythonizations are documented
● Some Pythonizations to help with C++/Python

lifetime issue
○ Still there are memory leaks when returning

owning pointers
● See also this ROOT meeting presentation

Example code from the rf316_llratioplot.py tutorial
showcasing the pythonizations:
Example code from the rf316_llratioplot.py tutorial
showcasing the pythonizations:

Create background pdf poly(x)*poly(y)*poly(z)
px = ROOT.RooPolynomial("px", "px", x, [-0.1, 0.004])
py = ROOT.RooPolynomial("py", "py", y, [0.1, -0.004])
pz = ROOT.RooPolynomial("pz", "pz", z)
bkg = ROOT.RooProdPdf("bkg", "bkg", [px, py, pz])

Create composite pdf sig+bkg
fsig = ROOT.RooRealVar("fsig", "signal fraction",
 0.1, 0., 1.)
model = ROOT.RooAddPdf("model", "model",
 [sig, bkg], [fsig])

data = model.generate((x, y, z), 20000)

Make plain projection of data and pdf on x observable
frame = x.frame(Title="Projection on X", Bins=40)
data.plotOn(frame)

Pythonizations

https://root.cern/doc/master/group__RoofitPythonizations.html
https://indico.cern.ch/event/1061658/
https://root.cern/doc/master/rf316__llratioplot_8py.html
https://root.cern/doc/master/rf316__llratioplot_8py.html

Implementing RooFit pythonizations

7

● All the RooFit pythonization code is located
in one directory in the PyROOT bindings

● For RooFit, we wrote an abstraction of the
cppyy Pythonization engine using Python
mirror classes

● All attributes of the mirror classes are
transferred to the actual RooFit classes
○ The original attributes are available

with an underscore prefix

It’s important that power users are aware of
how easy that is, to contribute pythonizations
with high user impact!

Example code showing the pythonization of RooRealVar:

class RooRealVar(object):
 def bins(self, range_name=None):
 """Return the binning of this RooRealVar as a
 NumPy array."""

 # you can use the function name with an
 # underscore prefix to access the original C++
 # overload if it exists, e.g., by calling
 # self._bins

 # code skipped here
 …

 return bin_array

PR list

Pythonizations

https://github.com/root-project/root/blob/master/bindings/pyroot/pythonizations/python/ROOT/_pythonization/_roofit
https://github.com/root-project/root/blob/master/bindings/pyroot/pythonizations/python/ROOT/_pythonization/_roofit/_roorealvar.py

RooFit with NumPy, Pandas, and RDF

8

● ROOT v6.26 new converters between
NumPy arrays/Pandas dataframes and
RooDataSet/RooDataHist

○ No translation from RooDataHist to
dataframe because histograms are in
general multi-dimensional

○ Tutorial in Python

● New RooRealVar.bins() function to get RooFit
bin boundaries as NumPy array

● Creating RooFit datasets from RDataFrame
○ Works for both RooDataSet and

RooDataHist
○ Weighted filling still needs to be

implemented
○ Tutorial in C++ and Python

from ROOT import RooRealVar, RooCategory, RooGaussian

x = RooRealVar("x", "x", 0, 10)
cat = RooCategory("cat", "cat",
 {"minus": -1, "plus": +1})

mean = RooRealVar("mean", "mean",
 5, 0, 10)
sigma = RooRealVar("sigma", "sigma",
 2, 0.1, 10)

gauss = RooGaussian("gauss", "gauss",
 x, mean, sigma)

data = gauss.generate((x, cat), 100)

df = data.to_pandas()

Example of exporting RooDataSet to Pandas:

Pythonizations Interoperability

https://root.cern.ch/doc/master/rf409__NumPyPandasToRooFit_8py.html
https://github.com/root-project/root/blob/master/tutorials/roofit/rf408_RDataFrameToRooFit.C
https://github.com/root-project/root/blob/master/tutorials/roofit/rf408_RDataFrameToRooFit.py

Many new fitting options

○ IntegrateBins(double precision): integrate the PDF over the
bins instead of using the probability density at the bin center

○ RecoverFromUndefinedRegions(double strength): when PDF is
invalid (e.g. negative), add penalty to likelihood to direct the
minimizer away from undefined region

○ AsymptoticError(): use the asymptotically correct approach to
estimate errors in the presence of weights, slower but more
accurate than SumW2Error() (https://arxiv.org/abs/1911.01303)

○ GlobalObservablesSource(): which source to prioritize for global
observable values, which can now be conveniently stored in
RooDataSet/RooDataHist

9

Fit precision and correctness

Higher-level interfaces

Illustration of bias in binned fits
when not integrating PDF over bins

https://arxiv.org/abs/1911.01303

Parallelized gradient calculation

10

● For many parameters, most fitting time is
spent for the numeric gradient
computation (re-evaluation after varying
each parameter one at a time)

● Distributing the gradient calculation over
multiple processes is a very general way to
speed up fitting (see ACAT 2019 presentation)

● Gradient parallelization is part of ROOT 6.26
● It comes together with new likelihood

classes with improved performance for
parallelization over entries

Figure from the ACAT 2019 presentation
showcasing the scaling of the gradient
parallelization for an ATLAS Higgs combination fit

Gradient parallelization

More info in this talk
on the same workshop

https://indico.cern.ch/event/708041/contributions/3276177/
https://indico.fnal.gov/event/23628/contributions/240367/

RooWorkspace ⇄ JSON/YAML

11

● Tools to build RooWorkspaces (e.g.
HistFactory or CMS Higgs combination
tool) require descriptive languages to define
the model (like XML for HistFactory)

● JSON or YAML is more readable and more
standard nowadays

● The new RooFit (6.26) includes a new
RooJSONFactoryWSTool to import/export
RooWorkspaces to JSON or YAML

● This can ease interoperability also with other
statistics frameworks such as pyhf an zfit

Example on the right: JSON for Gaussian
signal with RooArgusBG background

"pdfs": {
"signal": {

 "type": "Gaussian",
 "x": "mes", "mean": "sigmean", "sigma": "sigwidth"

},
"background": {

 "type": "ARGUS",
 "mass": "mes", "resonance": 5.291,
 "slope": "argpar", "power": 0.5

},
"model": {

 "type": "pdfsum",
 "summands": [
 "signal",
 "background"
],
 "coefficients": [
 "nsig",
 "nbkg"
],
 "tags": [
 "toplevel"
]

}
},
"variables": {

"mes": { "value": 5.25, "min": 5.2, "max": 5.3 },
"sigmean": { "value": -5.28, "min": 5.2, "max": 5.3 },
"nsig": { "value": 200, "min": 0, "max": 10000 },
"argpar": { "value": -20, "min": -100, "max": -1 },
"nbkg": { "value": 800, "min": 0, "max": 10000 }

}

Interoperability

More info in this talk
on the same workshop

https://github.com/root-project/root/tree/master/roofit/hs3
https://github.com/scikit-hep/pyhf
https://github.com/zfit/zfit
https://indico.fnal.gov/event/23628/contributions/240368/

RooFit in the ROOT Plan of Work 2022

RooFit plans from ROOT plan of work 2022 slides (public),

priorities super high, medium high, fairly high:

○ Prototype usage of automatic differentiation
○ Consolidate work on batch mode and GPU support
○ Roll out parallel gradient likelihood and parallel Hessian computation
○ Further optimize HistFactory implementation for speed
○ Stabilize RooWorkspace to JSON conversion tools
○ More benchmarks with recent experiment workflows
○ Further pythonizations

..plus addressing the requests from experiments!

12

https://indico.cern.ch/event/1133937/

Automatic differentiation (AD) in RooFit

○ Gradient of RooFit model essential for minimization
○ RooFit uses numeric derivatives, varying one parameter at the time
○ Using analytic gradients is much more efficient for many parameters
○ We can use automatic differentiation techniques to get these gradients

○ No code merged yet, but we investigate different implementation paths:
○ Extend RooAbsReal with gradient interface and evaluate the gradient with the chain rule
○ Squashing RooFit model to one function and automatically differentiate with clad

○ For both approaches, we can build on top of the new BatchMode() evaluation backend
○ We are focusing on HistFactory models in our prototype work:

○ Limited set of RooFit objects and many parameters

Automatic differentiation

13

https://github.com/vgvassilev/clad

Benchmarks with experiment workflows

○ The focus of this year so far was consolidating the BatchMode and prototyping for AD

○ We also want to improve monitoring of major user code and cutting-edge workflows
○ We have access to recent CMS and ATLAS Higgs combination workspaces

○ Already use them for guiding improvements:
○ performance optimizations
○ Interface extensions

○ Structured benchmarks in rootbench will follow later

○ It is important that experiment code is compatible with newest ROOT version for
benchmarking new RooFit developments!
○ We are also happy to help with this, as we do for example for Higgs combing (CMS)

Testing and benchmarking Targeted optimizations for
expensive workflows

14

https://github.com/root-project/rootbench
https://github.com/cms-analysis/HiggsAnalysis-CombinedLimit

Summary

15

● RooFit is evolving steadily
○ Support and development from ROOT team at CERN
○ Many new features developed by external contributors

● Highlights of the recent version 6.26 are the GPU BatchMode and the Pythonizations

● Future developments will focus on automatic differentiation and general speedups
○ In particular for HistFactory-style binned fits with many parameters

● It is important to know about experiment workflows for targeted optimizations

● Your input is always welcome!

