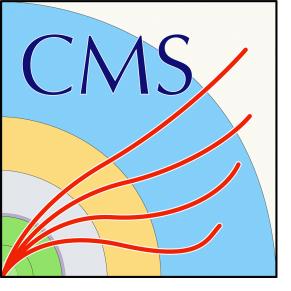


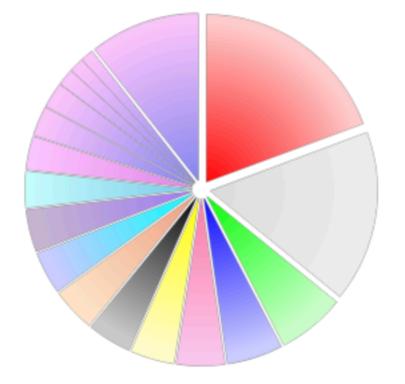
12345: Lessons Learned building an Analysis Framework around RDataFrame and CMS NanoAOD


Nicholas Manganelli PhD Candidate, Compact Muon Solenoid Collaboration

UC REPORT OF CALIFORNIA

12345: Lessons Learned building an Analysis Framework around RDataFrame and CMS NanoAOD

Nicholas Manganelli PhD Candidate, Compact Muon Solenoid Collaboration



UC REPORT OF CALIFORNIA

Thanks to the ROOT team!

	Jet
	GenPart
	Electron
	Tau
	TrigObj
	Muon
	GenJet
	HLT
	SV
	LHEPart
	Photon
	CorrT1METJet
	L1
	FatJet
Ē	SoftActivityJet
	SubGenJetAK8
_	MET

Event data

collection	kind	vars	items/evt	kb,
Jet	collection	42	8.77	0
GenPart	collection	9	50.82	0
Electron	collection	63	1.15	0
Tau	collection	47	1.40	0
TrigObj	collection	11	9.88	0
Muon	collection	54	0.92	0
GenJet	collection	7	7.66	0
HLT	singleton	651	1.00	0
SV	collection	15	2.68	0
LHEPart	collection	9	8.45	0
Photon	collection	31	1.49	0
CorrT1METJet	collection	6	7.34	0
L1	singleton	321	1.00	0
FatJet	collection	50	0.36	0
SoftActivityJet	collection	4	5.96	0
SubGenJetAK8	collection	5	2.42	0
MET	singleton	12	1.00	0
SubJet	collection	17	0.49	0
GenJetAK8	collection	7	1.24	0
PuppiMET	singleton	7	1.00	0
IsoTrack	collection	15	0.34	0
LHE	singleton	11	1.00	0
PV	singleton	8	1.00	0

Compact Muon Solenoid's NanoAOD

- Data format for proton-proton collisions •
 - Root-based, O(1kB) per event •
- High Level (not all particles, hits, tracks, etc.)
- Data stored as scalars and Jagged arrays of primitive types (int, float, bool, ...)

Jet GenPart Electron Tau

[back to top] Jet (8.8 items/evt, 0.386 kb/evt)

	branch	kind	b/event	b/item	plot
	Jet_eta	Float_t	20.9	2.4	
	Jet_phi	Float_t	20.5	2.3	
	Jet_btagDeepFlavB	Float_t	17.3	2.0	
	Jet_btagDeepFlavC	Float t	16.7	1.9	
	Jet_mass	Float t	15.8	1.8	
Even	Jet_pt	Float t	15.7	1.8	
	Jet_btagCSVV2	Float t	14.7	1.7	
Jet	Jet_btagDeepB	Float t	14.5	1.7	
Gen	Jet btagDeepC	Float t	14.2	1.6	
Ele	Jet puIdDisc	Float t	13.8	1.6	
	 Jet_qgl	Float t	13.5	1.5	
Tau Tau	Jet_cRegCorr	Float t	13.3	1.5	
Tri	Jet rawFactor	Float t	13.3	1.5	
Muo	 Jet_muonSubtrFactor	Float t	13.2	1.5	
Gen	 Jet_bRegCorr	Float t	12.9	1.5	
HLT	Jet_btagCMVA	Float t	12.6	1.4	
SV	Jet_neEmEF	Float t	11.9	1.4	
LHE	Jet_chFPV1EF	Float t	11.8	1.3	
Pho	Jet_neHEF	Float t	11.5	1.3	
Cor	Jet_chFPV0EF	Float t	11.3	1.3	
L1	Jet_chHEF	Float t	11.0	1.3	
Fat	Jet_bRegRes	Float t	10.6	1.2	
Sof	 Jet_cRegRes	Float t	10.5	1.2	
Sub	Jet_chFPV3EF	Float t	10.4	1.2	
MET	Jet_chFPV2EF	Float t	10.1	1.2	
Sub	Jet_nConstituents	Int_t	7.5	0.9	I.
Gen	Jet_area	Float t	6.8	0.8	1
Pup	 Jet_partonFlavour	Int_t	4.9	0.6	1
Iso'	 Jet_genJetIdx	 Int_t(index to Genjet)	4.1	0.5	I
LHE		singleton	11	1.00	0 0
PV		singleton	8	1.00) ()

4

Compact Muon Solenoid's NanoAOD

- Data format for proton-proton collisions
 - Root-based, O(1kB) per event •
- High Level (not all particles, hits, tracks, etc.)
- Data stored as scalars and **Jagged arrays** of **primitive** types (int, float, bool, ...)
- Contains "Collections" for muons, electrons, jets, generator-level particles, with crossreferences via index-positions in linked collection
 - Coll. structure via naming convention
- Important collections: ~two-dozen variables

4.0% 4.0% 3.7% 3.7% 3.6% 3.5% 3.4% 3.4% 3.4% 3.4% 3.3% 3.2% 3.0% 3.0% 2.9% 2.9% 2.8% 2.7% 2.7% 2.6% 2.6% 1.9% 1.7% 1.3% 1.0% 0.012 0.011 Nick Manganelli

5.3%

5.2%

4.4%

4.2%

What did I do?

ERSIDE

5

- Built an RDataFrame-based analysis framework
 - targeting a specific analysis, potentially for multiple related 'decay channels'
 - Wanted something fast, NanoAOD-compatible, using python as the interface
 - Needed to be <u>scalable</u> quick tests (fast turnaround to make decisions), scale up to processing billions of events with O(100) systematic variations
 - Development partially overlapped bamboo (2019 2021 principally) •
 - SPOILERS: Discovered how **not** to do a lot of things! <- good chunk of this presentation

"1 out of 5 - would not recommend"

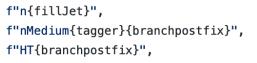
Lesson 10:

Don't work alone

EXERSIDE

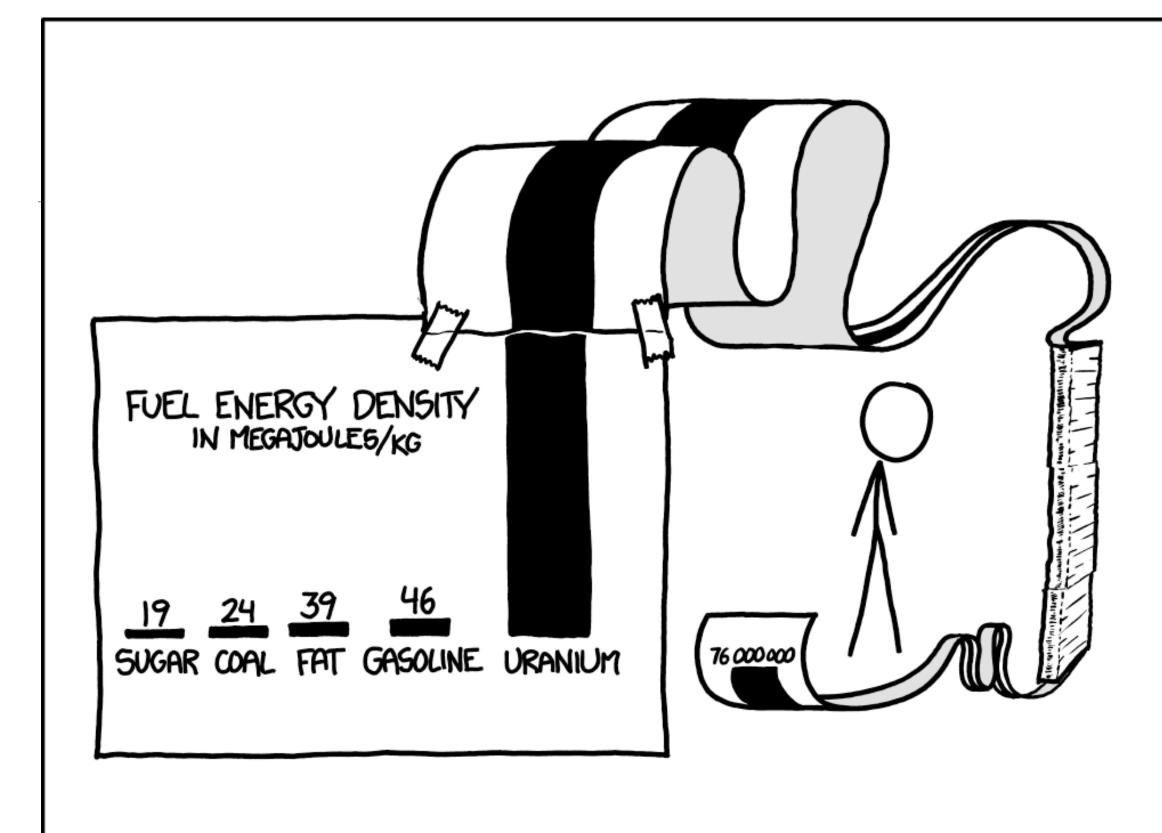
- solo-graduate student (all PostDocs/ GradStudents finished and left group early on)
- Few resources/knowledge of what other RDF users were doing (learned of bamboo ~6 months deep in dev)
- All the good documentation, examples, etc. are very appreciated!

6




```
#Make sure the nominal is done first so that categorization is successful
for sysVarRaw, sysDict in sorted(sysVariations.items(), key=lambda x: "$NOMINAL" in x[0], reverse=True):
    #skip systematic variations on data, only do the nominal
                                                                                                                                  (HT_Model,
   if isData and sysVarRaw != "$NOMINAL":
                                                                                                                                  f"n{fillJet}",
       continue
    #Only do systematics that are in the filter list (storing raw systematic names...
                                                                                                                                  f"HT{branchpostfix}",
    if sysVarRaw not in sysFilter:
                                                                                                                                   wgtVar)
        continue
    #get final systematic name
    sysVar = sysVarRaw.replace("$NOMINAL", "nom").replace("$LEP_POSTFIX", sysDict.get('lep_postfix', '')).replace("$ERA", era)
    #skip making MET corrections unless it is: Nominal or a scale variation (i.e. JES up...)
    isWeightVariation = sysDict.get("weightVariation", False)
    #jetMask = sysDict.get("jet_mask").replace("$SYSTEMATIC", sysVar).replace("$LEP_POSTFIX", sysDict.get('lep_postfix', ''))
    #jetPt = sysDict.get("jet_pt_var")
    #jetMass = sysDict.get("jet_mass_var")
    #Name histograms with their actual systematic variation postfix, using the convention that HISTO_NAME__nom is
    # the nominal and HISTO_NAME__$SYSTEMATIC is the variation, like so:
    syspostfix = "___nom" if sysVarRaw == "$NOMINAL" else "___{}".format(sysVar)
    #Rename systematics on a per-sample basis, rest of code in the eraAndSampleName cycle
    systematicRemapping = sysDict.get("sampleRemapping", None)
    #name branches for filling with the nominal postfix if weight variations, and systematic postfix if scale variation (jes_up, etc.)
    branchpostfix = None
    if isWeightVariation:
       branchpostfix = "___nom"
    else:
       branchpostfix = "__" + sysVar
    leppostfix = sysDict.get("lep_postfix", "") #No variation on this yet, but just in case
    combineHistoVariables += [templateVar.format(bpf=branchpostfix) for templateVar in combineHistoTemplate]
    fillJet = "FTAJet{bpf}".format(bpf=branchpostfix)
    fillJetEnumerated = "FTAJet{{n}}{bpf}".format(bpf=branchpostfix)
    fillJet_pt = "FTAJet{bpf}_pt".format(bpf=branchpostfix)
    fillJet_phi = "FTAJet{bpf}_phi".format(bpf=branchpostfix)
    fillJet_eta = "FTAJet{bpf}_eta".format(bpf=branchpostfix)
                      for dnode in defineNodes[eraAndSampleName][decayChannel][Hstart:Hstop]:
                          model = dnode[0]
                          defHName = model.fName
                          if isData:
                              variables = dnode[1:-1] # throw out the weight in the tuple definition
                          else:
                              variables = dnode[1:]
                          #Need to determine which kind of histo function to use... have to be careful, this guess will be wrong if anyone ever does an unweighted
                          if defHName in histoNodes[eraAndSampleName][decayChannel]:
                              raise RuntimeError(f"This histogram name ({defHName}) already exists in memory or is intentionally being overwritten"\
                                                  " {eraAndSampleName} - {decayChannel}")
                          else:
                              try:
                                  histoNodes[eraAndSampleName][decayChannel][defHName] = categoryNode.Histo3D(model, *variables)
                              except Exception:
                                  for variable in variables:
                                      if variable not in listOfColumns:
                                           print(f"variable {variable} is not available in the columns being histogrammed for {eraAndSampleName} - {decayChannel}")
```

UNIVERSITY OF CALIFORNIA


HT_Model = ROOT.RDF.TH3DModel(f"{eraAndProcessName}___{decayChannel}___{categoryName}___HT{histopostfix}", f"H_{{T}} ({histopostfix[3:]}); Jet Multiplicity; Medium b-Tagged Jet Multiplicity; H_{{T}}", len(nJetArr)-1, nJetArr, len(nBTagArr)-1, nBTagArr, len(HTArr)-1, HTArr) defineNodes[eraAndSampleName][decayChannel].append(

- Running systematic variations in the same event loop
 - Framework implementation predating Vary
 - Manual book-keeping via string substitutions
 - Weight-based: Histo1D(model, variableA NOM, wgt SYST N)
 - Non Weight-based: Histo1D(model, variableA_SYST_M, wgt_SYST_M)

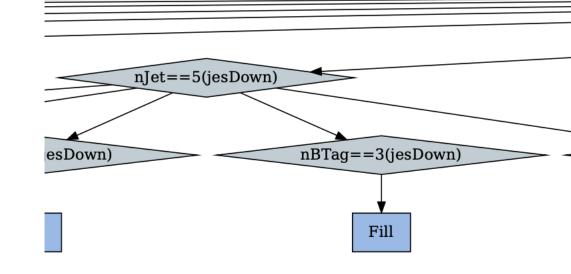
SCIENCE TIP: LOG SCALES ARE FOR QUITTERS WHO CAN'T FIND ENOUGH PAPER TO MAKE THEIR POINT PROPERLY.

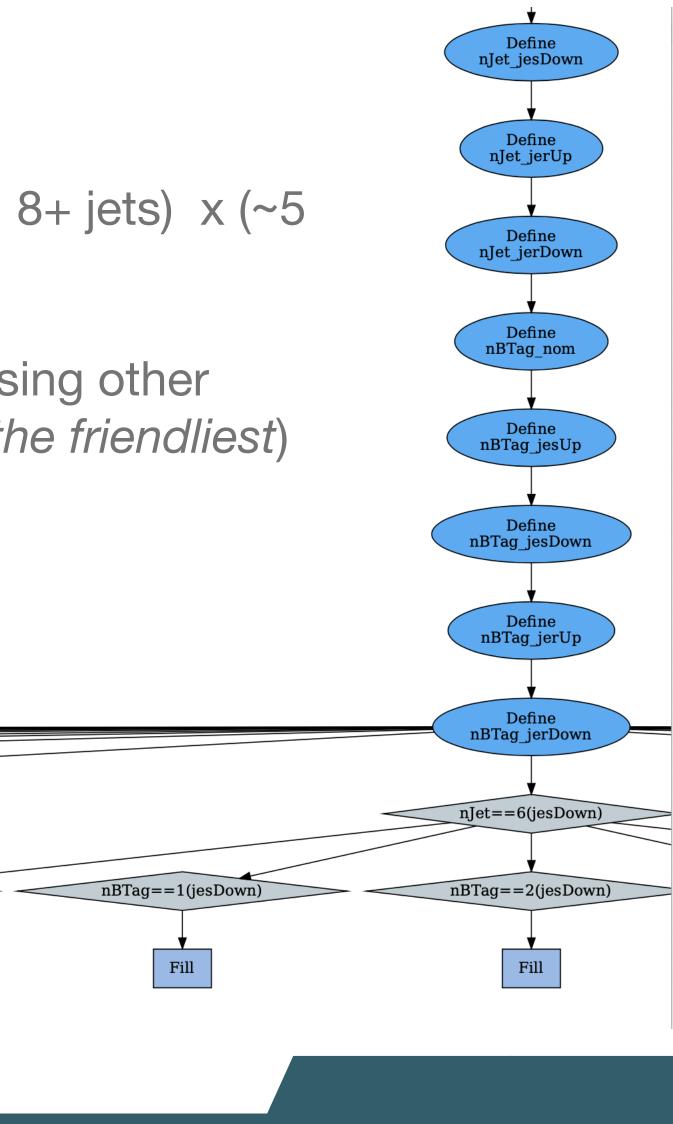
https://xkcd.com/1162

8

Scaling Behaviors - Typical Physics Problem

Lesson 8: SCALING


- I should have watched scaling behaviors
 - Early prototypes with systematics worked fine
 - Scaling up to the full set of ~75 systematic variations made memory use a concern!
 - batch resources ~ 2GB/core
 - histograms copied per thread
 - Good idea: backup plan for running either 1, some, all variations easily (keeping an eye on file-output/tracking/merging!)
 - Good idea: Atomic-storage ala boost::histogram (<u>narf</u>)


- **Categorization via graph-branching**
- Analysis required multiple categories (0, 1, 2, 3, 4+ b-tagged jets) x (4, 5, 6, 7, 8+ jets) x (~5 systematics) systematic dependent quantities being categorized on!
- Driven by external constraint imposed: 1D histograms (PI concern about confusing other students - admittedly, ROOT histogram n-dimensional slicing/projection is not the friendliest)
- Very costly to define all the histograms for all categorized-branch nodes!
 - Setup time of **minutes**, event loop execution in **10s**?!?

Prefer ND Histos!

9

UCREVERSITY OF CALIFORNIA

				nBTag
				nJet==
wn)	nBTag>=4(jesDown)	nBTag==0(jesDown)	nBTag==1(jesDown)	nBTag=
	Fill	Fill	Fill	
Nick	Manganelli			

UCREASING CALIFORNIA 10

Lesson 6: CONFIGURATION

UCRIVERSITY OF CALIFORNIA 11

Lesson 6: CONFIGURATION

Lesson 7: NON-UNIFORM SCALING DIMENSIONS

- Non-uniform scaling dimensions are a good way to trip up
- During analysis, we needed to take a few samples and split them into 2-4 sub-samples
 - Different weight scaling, naming, histogram grouping for statistical inference •
 - failure to apply KISS Thought it would be great ('cute') to still run over the sample once...
 - So I introduced some additional splits in the computation graph node... a lot of nontrivial work and effort in order to do this for 'production-ready' case
 - Voilà, 4x the histograms... and ~4x the memory (16GB for most important background when using 1D histograms over many variables simultaneously for 8 threads!)
 - Also lead to discovery of a problem with <u>simultaneous Snapshots</u>

12

Lesson 6: CONFIGURATION

Steering code via configuration files is especially useful with JIT-ing via RDataFrame's python interface

Store quantities to Define or Filter-on in e.g. YAML* **

Round-trip bookkeeping without modifying everything by hand...

semi-arbitrary code execution (yes, use safe-load!)

13

NIVERSITY OF CALIFORNIA

* (Almost) Turing complete? Eh...

** Roundtrip read/update/write with comments is great, though

splitProcess: ID: nFTAGenJet/FTAGenHT: true subera: false unpackGenTtbarId: true processes: ttother_DL-GF_fr: filter: nAdditionalBJets < 2 && nFTAGenLep == 2 && nFTAGenJet >= 7 && FTAGenHT >= 500 fractionalContribution: 0.894147882307 Computed and effectiveCrossSection: 1.3911901673 snapshotPriority: 2 nEventsPositive: 8737826 round-trip'd nEventsNegative: 44399 sumWeights: 631625527.5556817 to the YAML sumWeights2: 46360359398.90896 nominalXS: 1.4086498734234616 nominalXS2: 2.3058633536195604e-07 effectiveXS: 1.2439297561214113 effectiveXS2: 1.7981220203253497e-07 nLep2nJet7GenHT500-550-nominalXS: 0.17719474915135627 nLep2nJet7pGenHT500p-nominalXS: 1.4086498734234616 nLep1nJet9GenHT500-550-nominalXS: 0.0 nLep1nJet9pGenHT500p-nominalXS: 0.0 nLep2nJet7GenHT500-550-effectiveXS: 0.156474525897916 nLep2nJet7pGenHT500p-effectiveXS: 1.2439297561214113 nLep1nJet9GenHT500-550-effectiveXS: 0.0 nLep1nJet9pGenHT500p-effectiveXS: 0.0 ttbb_DL-GF_fr: filter: nAdditionalBJets >= 2 && nFTAGenLep == 2 && nFTAGenJet >= 7 && FTAGenHT >= 500 fractionalContribution: 0.894231918352 effectiveCrossSection: 0.0659588897972 snapshotPriority: 4 nEventsPositive: 300696 nEventsNegative: 1393

\$NOMINAL:

VERSITY OF CALIFORNIA

14

```
jet_mask: jet_mask
 lep_postfix: ''
 jet_pt_var: Jet_pt_nom
                                  Indicates branch names of inputs for this variation
 jet_mass_var: Jet_mass_nom
 met_pt_var: METFixEE2017_T1_pt
 met_phi_var: METFixEE2017_T1_phi
 btagSF:
   CSVv2: Jet_btagSF_csvv2_shape
   DeepCSV: Jet_btagSF_deepcsv_shape
   DeepJet: Jet_btagSF_deepjet_shape
 weightVariation: false
                           Variation type indicators for handling in the analyzer
 isNominal: true
 systematicSet:
               Flag for that backup plan to limit number of systematics in a run

    nominal

 commonWeights:
   pwgt_LSF___nom: "(FTALepton$LEP_POSTFIX_SF_nom.size() > 1 ? FTALepton$LEP_POSTFIX_SF_nom.at(0) * FTALepton$LEP_POSTFIX_SF_nom.at(1) : FTALepton$LEP_POSTFIX_
   EGamma_HLT_ZVtx_SF_nom: "return 0.991;"
   EGamma_HLT_ZVtx_SF_unc: "return 0.001;"
   pwgt_Z_vtx___nom: "return (abs(FTALepton$LEP_POSTFIX_pdgId.at(0, 0)) == 11 || abs(FTALepton$LEP_POSTFIX_pdgId.at(1, 0)) == 11 ) ? EGamma_HLT_ZVtx_SF_nom : 1
   top_parton_pt_nnlo_nlo: "GenPart_pt[abs(GenPart_pdgId) == 6 && (GenPart_statusFlags & 8192) > 0]"
   top_parton_sf_nnlo_nlo: "sqrt(0.103*exp(-0.0118 * top_parton_pt_nnlo_nlo) - 0.000134 * top_parton_pt_nnlo_nlo + 0.973)"
   pwgt_top_pT_nnlo_nlo: "top_parton_sf_nnlo_nlo.at(0, 1.0) * top_parton_sf_nnlo_nlo.at(1, 1.0)"
   prewgt___nom: "pwgt___LumiXS * puWeight * L1PreFiringWeight_Nom * pwgt_LSF___nom * pwgt_Z_vtx___nom * pwgt_ttbar_njet_multiplicity___$SYSTEMATIC * pwgt_top_
   pwgt_btagSF_common: "pwgt___LumiXS * puWeight * L1PreFiringWeight_Nom * pwgt_LSF___nom * pwgt_Z_vtx___nom * pwgt_ttbar_njet_multiplicity___$SYSTEMATIC * pwg
 finalWeights:
   wgt___$SYSTEMATIC: "prewgt___$SYSTEMATIC * pwgt_btag___$SYSTEMATIC"
OSDL_$ERA_jesTotalUp:
 jet_mask: jet_mask_$SYSTEMATIC
 lep_postfix: ''
 jet_pt_var: Jet_pt_jesTotalUp
 jet_mass_var: Jet_mass_jesTotalUp
 met_pt_var: METFixEE2017_T1_pt_jesTotalUp
 met_phi_var: METFixEE2017_T1_phi_jesTotalUp
```

JIT'd Definitions and weights for final histogram filling Flexibility > Runtime execution

Lesson 5: All-In-One BOOKKEEPING

All-in-one meta-info storage is a double-edged sword

- Easier to look at information coherently

15

- More work to parse and compare simple information (i.e. just number of events between samples)

- In the end, a win IMO

UCREVERSITY OF CALIFORNIA

```
- ElEl_D:
   era: '2018'
   subera: D
   isData: true
   nEvents: 56233597
   channel: ElEl
   channels:
   – ElEl
   source:
     NANOv6: dbs:/EGamma/Run2018D-Nano250ct2019-v1/NANOA0D
     NANOv7: dbs:/EGamma/Run2018D-02Apr2020-v1/NANOAOD
     NANOv7_CorrNov: list:/eos/user/n/nmangane/analysis/LongTermFilelists/2018__NANOv7_CorrNov__ElEl_D.txt
     NANOv7_CorrNov__ElEl: glob:/eos/user/n/nmangane/files/NANOv7_CorrNov/skims/2018/ElEl_D/ElEl/*Skim.root
     NANOv7_CorrNov__ElMu: glob:/eos/user/n/nmangane/files/NANOv7_CorrNov/skims/2018/ElEl_D/ElMu/*Skim.root
     NANOv7_CorrNov__MuMu: glob:/eos/user/n/nmangane/files/NANOv7_CorrNov/skims/2018/ElEl_D/MuMu/*Skim.root
     NAN0v7_CorrNov_brokenpublishing: dbs:/EGamma/nmangane-NoveCampaign-bbf89cdf76a3c3d36b22aa33ba75d46e/USER
                                                                                                               instance=prod/phys03
- ElMu_A:
   era: '2018'
   subera: A
   isData: true
   nEvents: 4453465
   channel: ElMu
   channels:
   – ElMu
   source:
     NANOv6: dbs:/MuonEG/Run2018A-Nano250ct2019-v1/NANOAOD
     NANOv7: dbs:/MuonEG/Run2018A-02Apr2020-v1/NANOAOD
     NANOv7_CorrNov: list:/eos/user/n/nmangane/analysis/LongTermFilelists/2018__NANOv7_CorrNov__ElMu_A.txt
     NANOv7_CorrNov__ElEl: glob:/eos/user/n/nmangane/files/NANOv7_CorrNov/skims/2018/ElMu_A/ElEl/*Skim.root
     NANOv7_CorrNov__ElMu: glob:/eos/user/n/nmangane/files/NANOv7_CorrNov/skims/2018/ElMu_A/ElMu/*Skim.root
     NANOv7_CorrNov__MuMu: glob:/eos/user/n/nmangane/files/NANOv7_CorrNov/skims/2018/ElMu_A/MuMu/*Skim.root
     NANOv7_CorrNov_brokenpublishing: dbs:/MuonEG/nmangane-NoveCampaign-bbf89cdf76a3c3d36b22aa33ba75d46e/USER instance=prod/phys03
```


Define("MyJet_mask", "Jet_pt > 30 && abs(Jet_eta) < 2.5...") Define("MyJet_pt", "Jet_pt[MyJet_mask]") Define("MyJet_phi", "Jet_phi[MyJet_mask]") Define("MyJet_eta", ...)

```
. . .
Define("MyMuon_pt", "Muon_pt"
   if sort_column:
       if not sort_ascending:
           events = events.Define(
               f"{output_collection}jettake",
               f"return Reverse(Argsort({input_collection}{sort_column}[{output_collection}jetmask]));",
       else:
           events = events.Define(
               "jettake",
               f"return Argsort({input_collection}{sort_column}[{output_collection}jetmask]);",
   else:
       events = events.Define(
           f"{output_collection}jettake",
           f"return {input_collection}idx[{output_collection}jetmask];",
   events = events.Define(
       f"n{output_collection[:-1]}", f"return Sum({output_collection}jetmask);"
   for scol in sel_columns:
       # This can be replaced by .Select(Jet_*, ...) when that feature is supported
       events = events.Define(
           output_collection + scol,
           f"return Take({input_collection}{scol}[{output_collection}jetmask], {output_collection}jettake);",
    return events
```

sketch of select jets.py

16

UNIVERSITY OF CALIFORNIA

Lesson 4: STRUCTURE

- Analysis Framework retained for too long array-at-a-time manipulation (see left)
- MoA (Mess of Arrays), AoS, proxies?
 - gist: structs versus arrays lose a lot of RVec convenience
 - python proxies (bamboo)
 - RDataFrame-native proxy/object-like view (What's possible? how much could/ should be Experiment responsibility? e.g. Schema - NanoAOD has ~1 new version per year)

Lesson 3: NumPy-LIKE

- Hard to adjust to numpy-like array • manipulation
- How to create two *distinct* sub-collections with **complex multidimensional-cuts**?

Simple Example: Create two sub-collections of muons, which should not overlap, but have different pT, isolation, and Id requirements...

Define("iso_mu_mask", "Muon_pt > 30 && abs(Muon_eta) <= 2.4 && Muon_mediumId == true && Muon_pfIsoId >= 4")

Define("jpsi_cand_mu_mask", "Muon_pt > 3 && abs(Muon_eta) <= 2.4 &&Muon<u>loose</u>Id == true")

Lesson 3: NumPy-LIKE

- Hard to adjust to numpy-like array • manipulation
- How to create two *distinct* sub-collections with **complex multidimensional-cuts**?

Explicitly via boolean mask inversion!

Define("iso_mu_mask", "Muon_pt > 30 && abs(Muon_eta) <= 2.4 &&Muon_mediumId == true && Muon_pfIsoId >= 4")

Define("jpsi_cand_mu_mask", "Muon_pt > 3 && abs(Muon_eta) <= 2.4 && Muon_looseId == true && iso_mu_mask == false")

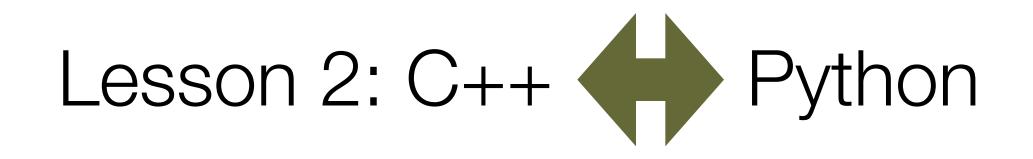
Also applicable to awkward-array!

Essential, extremely useful!

ROOT.gROOT.ProcessLine(".L SomeFunctions.cpp")

if type(lookupMap) == str:

SIDF

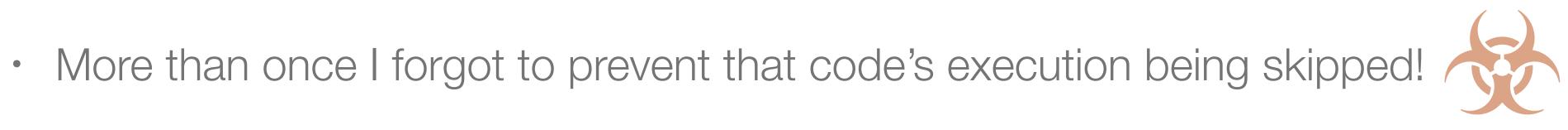

19

#It's a string name, see if it's been declared in the ROOT instance try:

if str(type(getattr(ROOT, lookupMap))) == "<class 'ROOT.map<string,vector<TH2Lookup*>>'>": pass

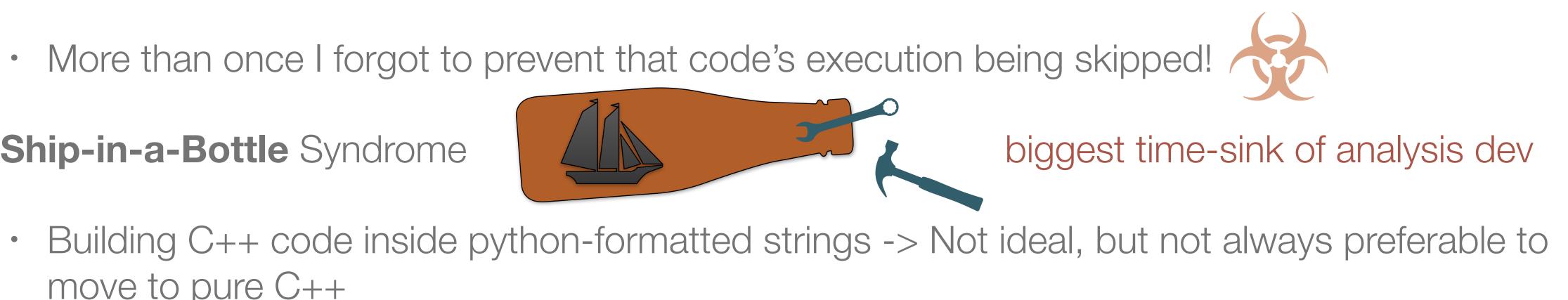
except:

ROOT.gInterpreter.Declare("std::map<std::string, std::vector<TH2Lookup*>> {0};".format(lookupMap)) iLUM = getattr(ROOT, lookupMap)


- Trial By Fire to learn
 - ROOT.gROOT.ProcessLine, • ROOT.glnterpreter.Declare, hasattr, getattr, isinstance
- Progress Bars, Look Up Tables (e.g. TH2)
- Testing C++ instantiated objects working correctly

- **pdb** (pdb.set_trace()) is essential when working from python
- C++ cout for event-loop checks

• Can't always separate out simple test-scenario -> good way to dive into middle of code exec.



- **pdb** (pdb.set_trace()) is essential when working from python
 - Can't always separate out simple test-scenario -> good way to dive into middle of code exec.
- C++ cout for event-loop checks
- Ship-in-a-Bottle Syndrome

21

UCRIVERSITY OF CALIFORNIA

- move to pure C++

No easy/direct access to the the 'environment' inside the event loop -> "BreakPoint" Proposal?

"I never learned from a man who agreed with me."

-Robert A. Heinlein

ROOT and the !ROOT Ecosystems

- Benchmarking the code and coming out fastest is fantastic •
 - have against TTree::Draw-based frameworks (I know of several)
- probably dominates!
 - Emphasis on new features like Vary, collection-aggregates/object-like this stage
 - As much UX-enhancements as performance-enhancements

23

*Compiled?

• Factor 3x* is small compared to the O(1000)-O(10000) improvement RDF/coffea

Benchmarking the user experience is harder, but for many analysts, this time

proxies, DefinePerSample, SampleInfo, *Distributed*, etc. is the right way to go at

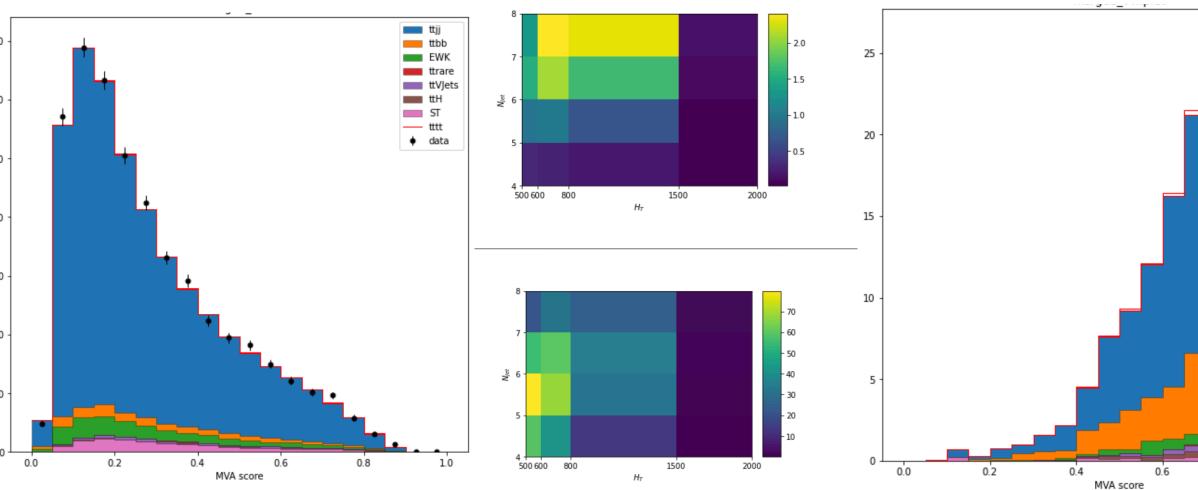
- Performance improvements (e.g. bulk processing, <u>ROOT PoW 2022</u>)
- Collection aggregations (muon_{pt,eta,phi} \rightarrow muons) <u>being discussed</u>
- Simpler Pythonic interfaces (less C++ strings in Python code), <u>PoW 2022</u>
- Allow default values for missing branches, <u>PoW 2022</u>, <u>GitHub issue</u>
- Debug symbols in jitted code (better error messages), <u>PoW 2022</u>, <u>GitHub PR</u>
- Dataset specification with user-defined sample labels
- …and more, see our <u>GitHub issue tracker</u>

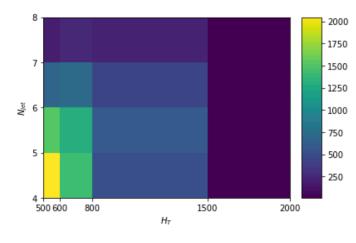
RDF@ROOT workshop, 9/5/2022

RDataFrame Coming Soon

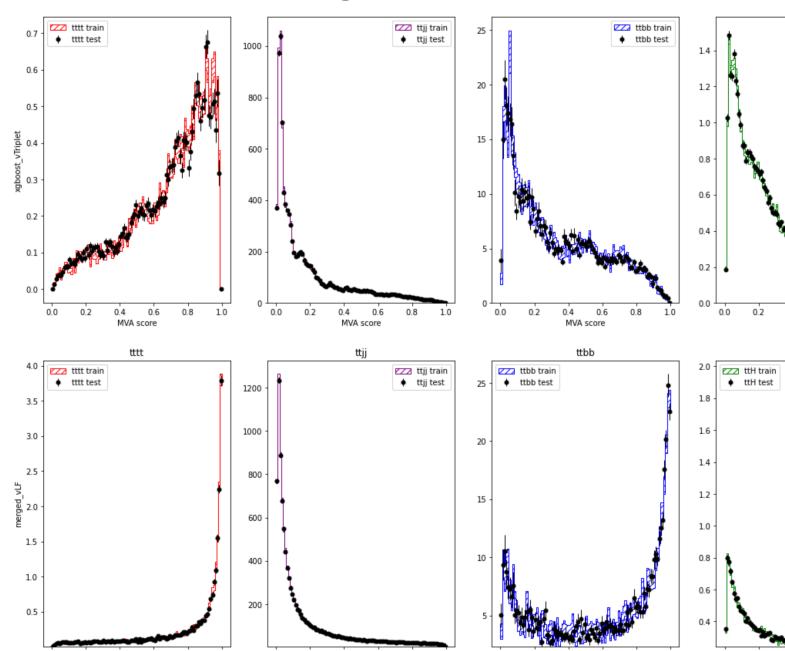
VDF@ROOT WORKSHOP, 9/3/2022

24


Coming soon


Multi-Dimensional Histograms

- Easy, composable N-Dim histograms (N = 5, 9, ...) • ala boost::histogram are really great (ROOT7 convergent evolution? Categorical, circular, ...)
- Combination with **UHI** (standards) is extremely-• powerful, game-changing...
 - I've been converting my workflows to this
 - Doubtful I'll ever look back... •
- ROOT: histo.GetYAxis().SetRange(yBinLow, • yBinHigh); histo.GetZAxis().SetRangeUser(...; ... histo.ProjectY(...)
- h[{"mva": "merged_vTriplet", "HT": hist.tag.Slicer() [700j: 1500j: sum], "nbtag": hist.tag.Slicer()[3j: 4j: sum]}].project("dataset", "mva").plot1d(overlay="dataset")


25

CMS Work In Progress (APS2022)

<u>All plots from</u> <u>one</u> single histogram (9D)

some dozen lines: slicing + plotting

STARTING THE EVENT LOOP FINISHING THE EVENT LOOP ROOT Benchmark stats... tt_DL/ElMu: Real Time = 762.31 seconds Cpu Time = 5071.09 seconds Writing outputs... Writing historams for...['2018___ttbb_DL_nr', '2018___ttbb_DL_fr', '2018___ttother_DL_fr', '2018___ttother_DL_nr'] Wrote 1850 histograms into file for 2018___ttbb_DL_nr::ElMu - /eos/user/n/nmangane/analysis/test/Combine/ElMu/2018___ttbb_DL_nr___HTOnly___5x5___all.root Wrote 1850 histograms into file for 2018___ttbb_DL_fr::ElMu - /eos/user/n/nmangane/analysis/test/Combine/ElMu/2018___ttbb_DL_fr___HTOnly___5x5___all.root Wrote 1850 histograms into file for 2018___ttother_DL_fr::ElMu - /eos/user/n/nmangane/analysis/test/Combine/ElMu/2018___ttother_DL_fr___HTOnly___5x5___all.root Wrote 1850 histograms into file for 2018___ttother_DL_nr::ElMu - /eos/user/n/nmangane/analysis/test/Combine/ElMu/2018___ttother_DL_nr___HTOnly___5x5___all.root channels skipped/cycled: 0/4 objects cycled: 7400 samples skipped/cycled: 1/5 Wrote Histograms for tt_DL to this directory: /eos/user/n/nmangane/analysis/test/Combine Processed Samples: tt_DL Took 12.0m 42.8979481770657s (762.8979481770657s) to process 2384473 events from sample tt_DL in channel ElMu

 $\label{eq:labeleq:la$

- Bulk of analysis in end-to-end mode (no intermediate snapshots), ~8 threads
- Huge, branching computation graph with thousands of Define and Filter calls
- Without Vary, a good amount of time in python configuring the Define/Filter/ HistoXD calls on the RDF nodes

Distributed and Scaling

- categories x systematic variations x samples...)
- What happens if this produces larger-than-memory results on the user?
 - Writing histograms to disk in efficient way from the worker-node?
 - Writing NumpyArrays out?

 Potential with Distributed + Vary + DefinePerSample/SampleInfo to have a single call that executed an entire analysis processing (all variables x cuts/

NIVERSITY OF CALIFORNIA 29

Plotting

- It takes 74 * 50 histograms to make one • PANEL in this plot (x 5 panels/canvas x 5 btag categories x 3 channels x 2 years x dozens of variables)
- ROOT's memory management made this painful early on, with Projections and Rebinning galore (not shown here!)
- Frustrating text scaling in different-sized pads (-> font precision 43 had its own quirks)
- Ticks, labelling them when margins -> 0
- aggregating and rebinning from python -> expensive for loops -> Multi-Dim Histograms preferable!

UCRIVERSITY OF CALIFORNIA 30

ML-training

- SOFIE might greatly simplify the issue of inference
- For training, being able to use the plethora of expertise, examples, code being developed by the huge data science and AI research communities would be really welcome -> "Generator" interface?