Fermilab CONTRACTOR OF Science

GENIE development updates

Steven Gardiner 9 March 2020 Neutrino Theory/Experiment WG Meeting

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

Ghent CRPA for GENIE

- Initially, we plan to use the same table-based hadronic tensor ($W^{\mu\nu}$) interface as for the SuSAv2 model
 - Discussed at this meeting previously, see implementation note (GENIE docDB #137)
 - Computes inclusive differential cross section using precomputed tensor elements interpolated on a 2D grid $d\sigma$

$$\frac{d\omega}{d\omega d |\mathbf{q}|} \propto L_{\mu\nu} W^{\mu\nu}$$

- Grid axes are the energy transfer (ω) and 3-momentum transfer ($|\mathbf{q}|$)
- Machinery used to generate event kinematics based on implementation of Valencia MEC model
- Low barrier to get started, possibility to transition to implementation in code
 - Fortran wrapper
 - Direct C++ translation
- Calculation provides only an inclusive prediction: well-suited to this approach
 - · However, a recipe to "make up" the hadronic final state is still needed

Ghent CRPA for GENIE

- Nuclear response calculation uses one-body operators only
- This fits into the GENIE "QE" category . . . mostly
 - CRPA includes treatment of low-energy nuclear excitations important at small ω
 - Tracking hit nucleon through classical intranuclear cascade may become inappropriate here
 - Compound nucleus models are an option
 - Implemented in codes like ABLA07, FLUKA, NON-SMOKER, MARLEY
 - How to treat the compound → direct transition rigorously in this context is currently unclear to me
 - Can start with something like the traditional GENIE approach, improve from there
 - Choose a nucleon from the active nuclear model
 - Transfer 4-momentum
 - Apply the usual FSI treatment (intranuclear cascade)

Spectral Function overview

- The spectral function approach uses a more realistic treatment of the initial nuclear state than the Fermi gas models traditionally used in GENIE
 - In particular, the nucleon removal energy E is variable and correlated with its initial 3-momentum ${\bf p}$
 - In contrast, the GENIE Fermi gas models treat the binding energy E_B (related to E) as a fixed parameter
- Noemi kindly provided me with the following inputs:
 - A table file for the ¹²C spectral function $P(\mathbf{p}, E)$
 - Tabulated EM nuclear responses R_L and R_T
 - Fortran code that computes the differential cross section $d\sigma/d\omega d\Omega$ for electron-¹²C scattering

Scope of recent GENIE work

- Current implementation work for spectral functions has focused on QE
 - Spectral function $P(\mathbf{p}, E)$ usable as nuclear model for other channels (e.g., RES)
 - However, not always consistent (e.g., existing MEC models make other assumptions)
- This has been a slow process, thanks for the patience!
 - Issues discovered early on in GENIE v3 removal energy treatment for QE
 - Resolution led to v3.0.4 bug-fix release (GENIE docDB #113)

Design considerations

- GENIE's QE treatment has historically used separate pieces of code for differential cross sections
 - EM: Rosenbluth
 - NC: Ahrens
 - CC: Llewellyn-Smith (and recently Nieves)
- This has been fine in the past, but there are limitations
- **Example #1:** neutrino/electron consistency
 - If you tune EM form factor parameters to electron scattering data, can you immediately use them for the vector part of CC/NC?
 - For NC, not unless you chose dipole vector form factors (hard-coded)
 - As discussed at ECT* workshop last June, unified code that treats EM / weak on an equal footing makes this sort of thing much simpler

Design considerations

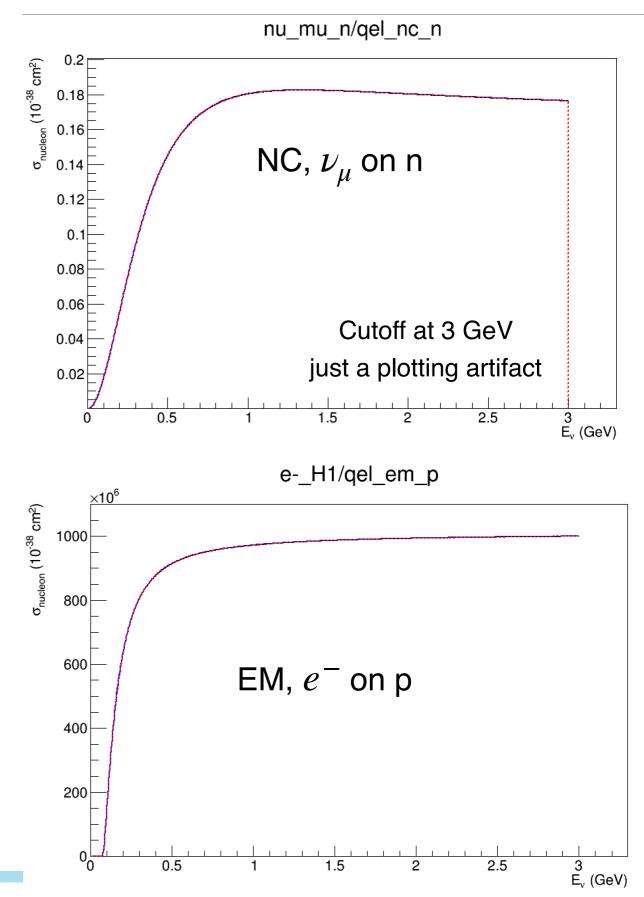
- GENIE's QE treatment has historically used separate pieces of code for differential cross sections
 - EM: Rosenbluth
 - NC: Ahrens
 - CC: Llewellyn-Smith (and recently Nieves)
- This has been fine in the past, but there are limitations
- Example #2: Extensions to non-standard processes
 - Discussed at FNAL Generator Tools workshop in January
 - Some BSM models use, e.g., a modified leptonic tensor $L_{\mu\nu}$ while keeping the rest of the cross section ingredients the same
 - Hard work to modify existing cross section code to allow for this sort of variation
 - And then there's the next theorist's modification to $L_{\mu
 u}$. . .

UnifiedQELXSec

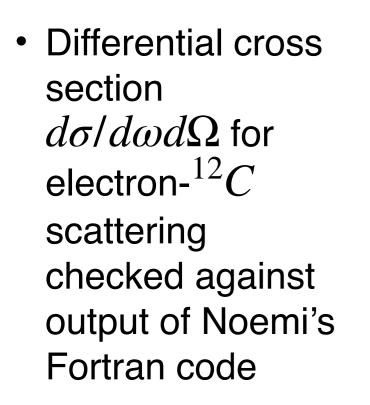
- I've tried to address some of these issues by writing a new C++ class, UnifiedQELXSec, that computes QE differential cross sections
 - EM + NC + CC, all in one piece of code
 - Couplings, form factors, etc. modified appropriately
- Helper classes for the lepton and nucleon tensors
 - LeptonTensor ($L^{\mu\nu}$)
 - FreeNucleonTensor ($A^{\mu\nu}$) \rightarrow as opposed to one modified for, e.g., RPA effects
 - Compute elements of themselves
 - Multiplying these tensors together yields the contraction $L_{\mu
 u}A^{\mu
 u}$
 - BSM process? Write a function that computes the tensor elements \rightarrow framework does the rest

🔁 Fermilab

- Expressions used in $A^{\mu\nu}$ include placeholders for second-class current (SCC) form factors $F_V^3(Q^2)$ and $F_A^3(Q^2)$
 - Zeroed out for now, but functions for these are all that is needed to include SCCs
- Compatible with GENIE v3 QELEventGenerator
 - Recent improvements to CCQE generation now can be applied to EM, NC

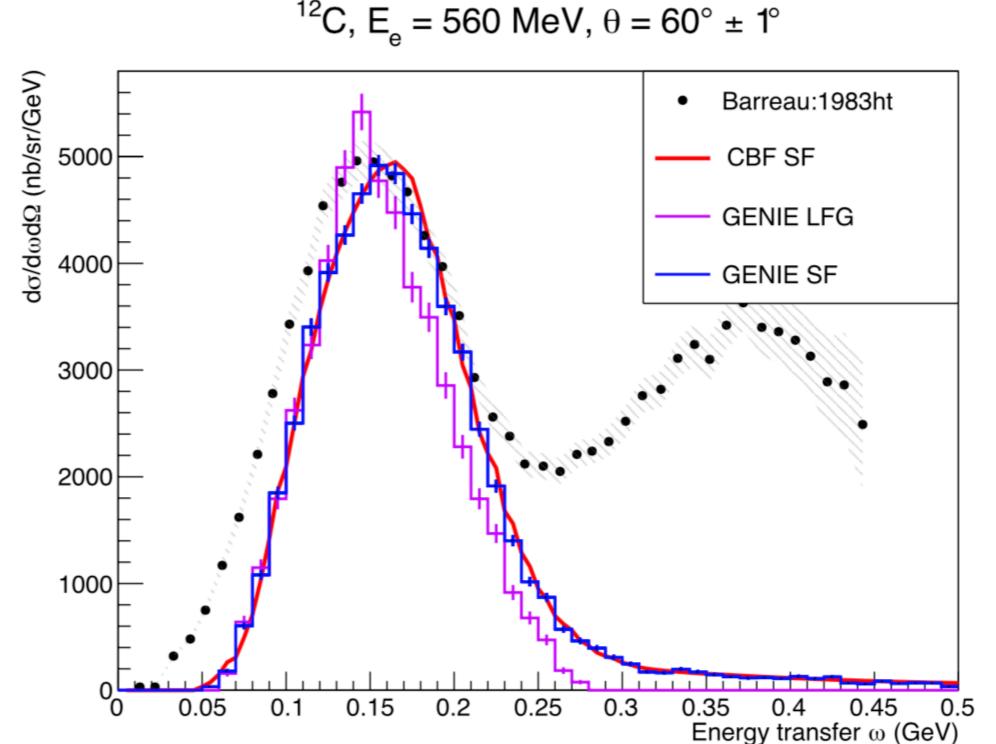

Validation: cross section ingredients

- Expression for $A^{\mu\nu}$ (including SCCs) taken from arXiv:1506.02355
 - They denote the same tensor by $J^{\mu
 u}$
 - Checked against full calculation (Dirac traces, etc.) using the FeynCalc package
 - Note factor of 2 discrepancy between eq. (9) and eq. (A1) \rightarrow corrected in GENIE
 - Otherwise, FeynCalc exactly reproduces the expression from the paper
- GENIE numerical calculation of tensor elements checked against FeynCalc
 - Dummy 4-momenta, form factor values
 - Very close agreement
- Free nucleon total cross sections
 - No spectral function needed here
 - $\sigma(E_{e \text{ or }\nu})$ tests correctness of couplings, tensors, cross section integration, etc.
 - When configured to match choice of form factors, etc., UnifiedQELXSec reproduces free nucleon predictions for existing GENIE models (see next slide)



Validation: free nucleon cross sections

- Red is UnifiedQELXSec, blue is existing GENIE model appropriate for the reaction mode of interest
- Consistency achieved for p/n targets and $e^-(\nu + \bar{\nu})$ projectiles for EM (CC/NC)



Validation: event-based differential cross section calculation

 Close agreement, differences from other GENIE nuclear models noticeable

11

🚰 Fermilab

03/09/2020 Steven Gardiner I GENIE development updates