Ionization laser updates (LIP)

José Maneira

DUNE Ionization Laser Group Meeting March 11, 2020

Ongoing work at LIP

- Port feedthrough design
 - insulation flange for both baseline and alternative
- LBLS mirror system
- Design of instrumentation interface board

Port feedthrough

- To avoid electronic noise, need to insulate all laser system electrical instrumentation from the detector electronics
- Cryostat connected to detector ground. So: need an insulation piece on top of port, below everything else.

Port feedthrough

- The Proposal is to use POM (Delrin) as the insulator and SS for the flanges.
- We propose to use this in both the baseline and alternative designs.
- Any comments?

Link to CAD files

LBLS mirror ongoing work

- Detailed CAD by Rui Alves
 - Grab the FC profile by clamping the inner lips
 - mount 3 or 5 mirrors with minimal intrusion into volume
- Choice of positions/angles

Instrumentation

- What motors and encoders to use?
- Half-step motors are understood to be much more noisy.
- Single-step preferable?
 - Normal backlash: 0.35 deg. == 61 mm @ 10 m. Too much...
 - Anti-backlash motor option from Thermionics 0.018 deg/step
 - That's 3.1 mm @ 10 m. Should be good enough, as long as the precision of our knowledge is (just a bit) better than that
 - Can we trust only the knowledge of the step?
 - No. Motors can miss a step sometimes. Need encoder.
 - Big question:
 - Is it enough to have an encoder at the motor or do we need to have an encoder at the rotating flange?

