Towards a new Track PID method

Leigh Whitehead DUNE FD Sim / Reco Meeting 16/03/20

Introduction

- I have been investigating the use of 1D convolutions to perform particle ID on track-like objects
- Currently I am trying to classify particles from neutrino interactions as either muons, pions or protons.
- Use a sample of roughly 100,000 tracks from MCC11 files in the DUNE FD workspace geometry
 - I use 80k for training and 20k for testing
 - Those from the testing sample are used later for the distributions

Introduction

- I take the final 100 points of the track as the 1D array
- If a track has 50 < points < 100 then I pad the start of the track as follows:
 - Calculate the mean and sigma of dE/dx for the central third of the points
 - Pad the array to length 100 using random values from a Gauss(mean,sigma) distribution
- Also store some additional variables
 - Mean and sigma of the dE/dx as calculated above
 - Mean and sigma of the distribution of angles between successive track points (how wobbly it is)
 - Number of track-like and shower-like child particles
 - Number of grand-children

Architecture

Input variable distributions

• Area normalised input distributions with normalised x-axes

Leigh Whitehead

Input variable distributions

• Area normalised input distributions with normalised x-axes

Results

- I trained the network for 20 epochs
 - This only takes about 15 minutes on my laptop CPU
 - 1D convolutions aren't very CPU intensive compared to other approaches such as RNNs (typically used for signal processing tasks for speech recognition)
- The next slides show the output scores for each of the three categories (muon, pion and proton)

Output distributions

0.8

CNN Pion Score

The CNN scores for different particle types

Output distributions

• The CNN scores for different particle types

Muon and proton scores well peaked at 1 (signal) and 0 (background)

Simple selections

- Try to make selections of muons / pions / protons
- Simplest approach:
 - Optimise the three selections individually based on the muon, pion and proton scores from the network
 - This doesn't guarantee mutual exclusivity
- Vary the cut value and plot the efficiency, background rejection and FOM (efficiency * purity in this case)

Muon Selection

• Distributions for the muon selection

Pion Selection

• Distributions for the pion selection

Proton Selection

• Distributions for the proton selection

• Shown for all three selections

Event selections

- Number of hits for each selection using the optimal cut values listed previously
 - Some tracks could be counted twice (could pass two cuts)

Proton Selection

Leigh Whitehead

Event selections

- Efficiency and purity of the event selections
 - Muon selection is bad at low numbers of hits... mostly due to the sample make-up
 - This was worse before I removed the number of hits from the training variables, though

Results

• Optimum cut values come out to give the following:

	Selected Signal	Selected Background	Efficiency	Purity
Muon Score > 0.48	23769 (25754)	3234 (32478)	92.3%	88.0%
Pion Score > 0.35	13383 (15788)	4514 (42444)	84.8%	74.8%
Proton Score > 0.48	15098 (16690)	808 (41542)	90.5%	94.9%

• Again, note that since the cut values are less than 0.5, these samples are not guaranteed to be mutually exclusive

Summary

- I have developed a track PID method using 1D convolutions to extract features from the dE/dx distribution
- Looks to be working well
 - See high purity and efficiency for selecting muons and protons
 - Some muon / pion confusion for short tracks
- Need to work on the interface to LArSoft now to get it integrated and tested