

ProtoDUNE CRP Upgrade

07/04/2020

B.Aimard, G.Deleglise, D.Duchesneau, N.Geffroy, J-M.Nappa, F.Peltier, S.Vilalte

Modal study to evaluate CRP stiffness based on first deformation mode (saddle shape)

Actual CRPs

Invar mass: 140kg

F1 ~ 2 Hz

1st optimization: Invar mass 330 kg F1 ~ 15 Hz

Shape of the first deformation mode:

Previous design

	Initial	Optimised
Static / 100N : max displacement	27mm	0,1 mm
First eigenfrequency	2 Hz	15,6 Hz
Invar mass	140 kg	160 kg

Invar frame improvements

Previous design:

Final design deadline:

✓ 15th June--> Production

Upgraded design:

- Suppression of numerous parts
- No machining on the edges
- Globaly simplified machining
- Strengthening of weak parts
- Prod. open to new manufacturers

Suspension / Decoupling systems

50 suspensions points between invar and G10

Widened and machined washers for better hole covering

- --> easier planarity adjustment procedure
- --> improved planarity of CRP under thermal contraction

Only one circlips

--> simplified solution for production and assembly

Self-locking thread inserts

-> brass to avoid stainless steel seizure

Resistive plated material (Kapton)

--> Plated both sides

13

Combs mechanical improvements

Previous comb design

Position under electrostatic force

Electrostatic force is higher than gravity during operation

Combs mechanical improvements

Electrostatic force is higher than gravity during operation

Combs thickening to 0,5mm (prev. 0,2mm)

- Better wire support
- Gap between LEMs is wider: 1 mm (prev. 0,5-0,8)
 - > CRP dimension maintained, LEMs/Anodes dimensions are reduced

Previous unused X-Y system is replaced by a simpler one :

- All CRPs will be dismanteled on place and evacuated without transport box
 - Then trashed or recycled
- CRP 1 & 2 replaced by 1bis and 2bis
- CRP 3 & 4 replaced by other type of detector
 - Study of technology compatibility and common run aspects

--> updated "Cabling layout" file available, to be finalized with cable lengths :

17

- All CRPs will be dismanteled on place and evacuated without transport box
 - Then trashed or recycled
- CRP 1 & 2 replaced by 1bis and 2bis
- CRP 3 & 4 replaced by other type of detector
 - Study of technology compatibility and common run aspects

Contribution welcome

--> updated "Cabling layout" file available, to be finalized with cable lengths :

18

• Transport boxes from phase 1 will be reused, with minor modifications

• Some systems, like G10/Invar transporting squares, are optimised to spare time in transport

- Minor changes in grid production tooling are necessary (support blocs machining)
- Storage system for grid subsets have to be designed for 2 3 full CRPs.

Creation of a 1x1m mini CRP, for validation of:

- New LEM / Anode design (CEA)
- Charge collection (resistive combs)
- Spark guides
- Instrumentation
 - Thermal LevelMeters
 - Deformation probes
 - ...

- Used in the coldBox test facility at CERN
- Design at LAPP: 04/2020 --> 06/2020 then production
- Available by 10/2020

Creation of a 1x1m mini CRP, for validation of:

- New LEM / Anode design (CEA)
- Charge collection (resistive combs)
- Spark guides
- Instrumentation
 - Thermal LevelMeters
 - Deformation probes
 - ...

- Used in the coldBox test facility at CERN
- Design at LAPP: 04/2020 --> 06/2020 then production
- Available by 10/2020

CEA collab. - LEMs/Anodes simulations

LEMs/Anodes modal simulations to explain microphony phenomena

Further investigation have to be performed

- Sandwich structure optimization
- Tests with real structures

CEA collab. - LEMs/Anodes simulations

LEMs/Anodes modal simulations to explain microphony phenomena

Further investigation have to be performed

- Sandwich structure optimization
- Tests with real structures

- Electrostatic simulations and concepts validations
 - Resistive combs
 - Spark guide
- Instrumentation developpement and reliability improvements
 - Thermal LevelMeters
 - Deformation probes
- Manual operations during production/installation
 - Extraction grid production
 - CRPs disassembly in NP02 detector

Construction - installation planning

