

cea

LEMs for ProtoDUNE-DP (PD-DP): design, QA/QC and tests

A. Delbart, G. Eurin, M. Karolak, P. Granger, <u>E. Mazzucato</u> - CEA/Irfu

ProtoDUNEs @ the CERN Neutrino Platform

Goal of ProtoDUNEs SP and DP :

 Validate the LArTPC technology scalable to O(10kt) modules of the FD for the future DU vE long-baseline v experiment

in USA.

- ProtoDUNE-DP :
 - Dual-phase LAr TPC
 - 720t of LAr
 - 300t fiducial mass

Dual Phase Principle: charge readout

A bit of history ...

Extensive studies performed at CERN by ETHZ (2008-2014) with a 3L DLAr TPC

C. Cantini et al., arXiv:1412.4402 Different LEM and anode designs investigated

Performance with the ETHZ 3L setup

C. Cantini et al., arXiv:1412.4402

Workshop on the LEM/Thick GEM cryogenic utilization in pure

Argon over large detection surfaces

LEM charging up, sparks and long-term performance

C. Cantini et al., arXiv:1312.6487

LEM charging up destroyed locally (~cm²) after a spark

LEM dielectric charging up due to *E-field lines crossing walls around holes*

- 2 sparks in 15 days after charging up
 - Extrapolation to 3m×3m : (5.0±3.5) sparks/h @ G~15

10 cm

(B. Aimard et al., JINST 13 (2018) 11, P11003)

The 311 prototype (2016-2018)

Dual phase concept demonstrated at the 4-ton scale. Several technical choices validated but also some CRP issues:

- Extraction grid could not be operated above 5kV
- Max. gain of 2-3 instead of goal value of 20
- Long-term operation not demonstrated (< 8h run), limited by power supply trips
- Max. $E_{LEM} = 31 kV/cm$ for short time (~1h) and < $3m^2$

Meanwhile, @ CEA/Irfu

Development of the infrastructures needed at Saclay for the characterization and tests of the LEMs and anodes.

LEM HV Tests in a High Pressure Chamber

GAr purity in HP chamber : > 1ppm O₂^{eq}

06/04/2020

LEM HV Tests in Ar @ 3.3 bar

CFR-34 – 311 prototype

Spark rate : ~20/h for △V_{LEM} > 3.3kV in Ar @ 3.3 bar (> 45% of sparks near edges or corners)

Building fully active LEMs is a challenge!

LEM Design for ProtoDUNE-DP

CFR-34 – 311 prototype

CFR-35 : LEM design for ProtoDUNE-DP production (74 LEMs) by ELTOS (Jan. – Oct., 2018)

Not the final one for a O(10kt) module! (see A. Delbart's talk)

CFR-35 – ProtoDUNE-DP

Gain measurements (ETHZ)

C. Cantini et al., arXiv:1412.4402

LEM QA/QC by ELTOS

LEM Specifications

Laminate specifications			
Laminate	FR4 epoxy PANASONIC R-1566W		
Dimensions	530 mm x 540 mm		
Bare FR4 epoxy thickness	1 mm (-0.05 /+0 mm)		
Copper thickness	105 μm		
Mean thickness	1,20 (-0.06/+0) mm		
Thickness uniformity	+/- 0.04 mm		
final LEM specifications			
Dimensions	499.5 mm x 499.5 mm +0/-0.3 mm		
Ni/Au	5 μm Ni + 0.1 μm Au		
Final thickness	1.10 (-0.05/+0.02) mm		
LEM holes	$pprox$ 400 000 non-plated Φ =0.5 mm -0/+0.01 mm		
RIM (with Ni/Au)	40 μm +/- 4 μm		

06/04/2020

LEM Survey @CEA/Irfu

100

80

Mean copper thickness : 62 µm

Argon over large detection surfaces

LEM HV training in Ar @ ~3.3 bar

Fully automated HV training up to 3.5kV

All LEMs tested up to 3.4 – 3.5 kV (no charging up) with < 1 spark / 20 minutes. (1/74 LEMs discarded)

CRP assembly and Cold Box tests @ CERN

- Assembly of a CRP in clean room at CERN (2-3 weeks)
- 36 anodes, 36 LEMs, extraction Grid, cabling and instrumentation (temperature probes, level meters)
- CRP survey

- Tests in DLAr mode without drift field (no charging up!)
- LEM and Grid HV tests
- 4t of LAr, no purification (< 100 ppm O₂^{eq})
- GAr at atmospheric pressure : density not controlled

CRP1 and CRP2 LEM HV Test Results in CB (Oct. – Nov./2018)

• Liquid level in CB stable to within ~250 μ m; T_{LEM} ~ 91°K; $\Delta V_{LEM-GRID}$ = 3kV

CR	P1 V _{TOP} (kV)	V _{вот} (kV)	E _{LEM} (kV/cm)	Time (h)	Spark Rate (h ⁻¹)	P _{atm} (mbar)	Estimated Gain (no ch. up)
	0.25	3.35	31.0	12	1.3	968 - 972	20
	0.50	3.55-3.60	30.5-31.0	13	1.3	962 - 966	24 - 31
	0.75	3.70	29.5	42	0.6	943 - 953	20
	1.00	3.80	28.0	18	2 trips [*]	970 - 976	9
	1.00	3.85	28.5	12	3 trips	936 - 947	15
							* PS TRIP time set too short
CR	P2 V _{тор} (kV)	V _{вот} (kV)	E _{LEM} (kV/cm)	Time (h)	Spark Rate (h ⁻¹)	P _{atm} (mbar)	Estimated Gain (no ch. up)
	0.10	3.15 - 3.20	30.5 - 31.0	17	0.8	969 - 973	9 - 11
	0.25	3.34	30.9	16	1.3	968 – 970	19
	0.50	3.55	30.5	11	0.9	957 – 965	24
	0.50	3.555	30.55	42	0.5	962 – 964	25

• Effective gain of 20 before charging up within range. Best HV configuration with $V_{TOP} \sim 0.5 kV$.

For larger V_{TOP} values, need to decrease E_{LEM} to achieve stable operation.

LEM Carbonization Issues

- Points to a LEM weaker region.
- 5/72 LEMs affected
- Treated with KMnO4 at CERN to remove carbonized FR4 inside holes. Copper surface unaffected.
- Cleaned at CEA/irfu and tested up to 3.2kV @ 3.3bar.

LEM rim defects

- Rims around holes near the LEM edges/corners appear to be decentered and containing copper residues
- Problem known by Rui de Oliveira (CERN EP-DT-EF)
- Due to method used by ELTOS for the micro-etching process

Problem addressed in collaboration with EP-DT-EF (see A. Delbart's talk)

Decentered rim with

Summary

- A lot of effort is being invested in the development of LEM detectors suitable for Dual Phase LArTPCs.
- Going from small prototypes to several m² detection systems, as needed in future v experiments, is a real challenge.
- Collaboration with industrial partners, like ELTOS (Italy) for LEM and anode productions for ProtoDUNE-DP and ELVIA (France) for prototypes, has been very constructive.
- Carbonization issues observed during Cold Box tests clearly call for further improvements in the LEM design and in the manufacturing process.
- CERN EP-DT-EF is a key partner to achieve these goals.

The 311 prototype: gain measurements

P. Cotte, Ph.D. thesis

Workshop on the LEMI/Thick GEM cryogenic utilization in pure

Argon over large detection surfaces

27

1.2