LEMs operation in ProtoDUNE-DP

Workshop on the LEM/Thick GEM cryogenic utilization in pure Argon over large detection surfaces

A. Delbart, G. Eurin, M. Karolak, P. Granger, E. Mazzucato

CEA-Saclay/IRFU

2020/04/06

ProtoDUNE-DP CERN

Operating principle of ProtoDUNE-DP

- Homogeneous drift field thanks to cathode and field cage
- Extraction field between grid and LEM bottom electrode
- Amplification in LEMs holes
- Readout in two directions by induction on the anode by field between LEM top electrode and anode

LEMs in ProtoDUNE-DP

Commissioning of ProtoDUNE in 2019

- ► 13/06: Cryostat closure
- ► 14/06 30/06: Air removal with GAr
- ► 01/07 04/07: Cooling down
- ► 05/07 09/08: LAr filling
- ► 12/08: Start TPC commissioning
- ➤ 29/08: First tracks from cosmics

Cosmic ray events recorded in ProtoDUNE-DP

Cosmic ray events at higher gains (3.1/3.2 kV) in protoDUNEdual-phase (October 2019)

Horizontal muon track

Electromagnetic shower + two muons decay

Multiple hadronic interactions in a shower

Charge Readout Planes (see talks by D. Duchesneau and B. Aimard)

Planarity of $\pm~1$ mm (after metrology at room temperature)

Automatic tracking of the liquid level

Planarity of ± 2 mm (observed during comissioning)

Tracking precision of 100 $\mu\mathrm{m}$

Cryogenics conditions and liquid argon surface

Argon purity in ProtoDUNE-DP

Purity measurements from short purity monitors

Purity measurements from long purity monitor

- ➤ 3 purity monitors (two *short* 17-cm long and one *long* 48cm-long)
- ➤ Since November 2019, short purity monitors sensitivity reached
- Long purity monitor more sensitive
- Discrepancies between long and shorts under investigation
- According to long monitor, electron lifetime larger than 7 ms since November and increasing

Technical issues

- Short-circuit between VHV cable and 21st ring of field cage
 - ⇒ Inhomogeneous electric field
 - ⇒ maximum 150 kV

(50 kV standard, 70 & 90 kV recently tested)

- ⇒ Should be fixed soon but challenging
- Surface instabilities:
 - Short pressure increase of 35 mbar performed every few days
 - Eliminates bubbles from top of field cage and HV feedthrough
 - Briefly eliminates waves on liquid surface
- Cryogenics instabilities could correlate with CRPs instabilities
- ► Cold filters clogging initially requiring cleaning every 10 days
 - \Rightarrow No more clogging after last intervention in November 2019
- Purity level systematics to understand
- Several electronics channels damaged by grid sparks

Slow control and LEM sparking

- Cold box: no automated protection of LEMs ⇒ carbonization on several LEMs from continuous discharges
- Two types of LEMs spark events: unique and successive
- ► In ProtoDUNE-DP, automatic reduction of HV from slow control:
 - $\bullet \sim 50 \text{ V}$ for unique sparks
 - up to 2.5 kV + slow ramping up for successsive sparks (carbonization)
- Recovery time for a unique spark $\simeq 2$ minutes
- Dead time for successive sparks of up to 2 hours

 \sim 8 % of sparking events are successive sparks in standard operation

Unique spark

Other ▼ 1:1

Sparking events during CRP operation

- ➤ Two types: grid+LEMs and LEMs-only
- ► LEM multiplicity: number of LEMs sparking simultaneously

- ▶ LEMs-only: limited to a few LEMs, mostly neighbouring ones
- Grid+LEMs: up to very high multiplicities
- Discrepancy points toward different origins for both types

Grid sparking

- Problematic due to damages to front-end electronics
- Origin unclear since grids should be immersed most of the time by 4-5 mm inside LAr:
 - part of the grid temporarily in GAr due to large bubbles, waves
 - local charge build-up on some PCB parts or elements?
 - capacitive effects or induction on grid system
- Front-end cards put in a safe position (disconnected from cold flanges) for most tests
- Long-term stability tests performed to find operations conditions limiting grid sparking
- ► Test planned: increase total capacitance of LEMs-grid system to reduce sensitivity to capacitive variations

Grid sparking

Grid sparking analysis during long-term stability tests

Sparks/h	Extraction	Cathode	R = 0	$R=10~M\Omega$	$R = 500 \text{ M}\Omega$
		ON	0.63 ± 0.08	0.37 ± 0.06	0.38 ± 0.11
	ON	OFF	0.26 ± 0.05	0.24 ± 0.03	$0.20 \pm 0.05 - 0.24 \pm 0.09$
CRP1		ON - OFF	0.37 ± 0.09	0.13 ± 0.07	0.14 ± 0.14
$\Delta V = 3.1 \text{kV}$	OFF	ON		< 0.07 @ 90 % C.L.	< 0.06 @ 90 % C.L.
$\Delta V = 3.1 \text{ KV}$		OFF		< 0.10 @ 90 % C.L.	< 0.10 @ 90 % C.L.
	Extraction	Cathode	No resistors	10 MΩ resistors	500 MΩ resistors
		ON		0.47 ± 0.06	0.89 ± 0.15
	ON	OFF		0.39 ± 0.07	0.86 ± 0.18
CRP2		ON - OFF		0.08 ± 0.09	0.03 ± 0.24
CIVI 2		ON			0.02 ± 0.02
$\Delta V = 3.4 \text{kV}$	OFF	OFF			0.00 ± 0.00
		ON-OFF			0.02 ± 0.02

- ► No evidence for an impact of the drift field
- ightharpoonup Extraction field OFF \Rightarrow rate consistent with zero, independent from LEMs ΔV , current limiting resistors and drift
- Extraction field ON:
 - Sparks probably due to LEMs-grid coupling
 - Rate \in [0.2, 0.9] spark/h (LEM $\Delta V > 3.1 \text{ kV})$
 - Larger rate with larger LEM ΔV
 - Factor of 2 reduction with resistors from 500 M Ω to 10 M Ω

LEMs HV scan

- ► Sparking rates with HV scan on CRP2
- LEMs sparking rates are normalised to a full CRP
- No extraction field on 9-11 LEMs chosen for their stability
- ▶ Rest of the CRP at $\Delta V = 2.0 \,\text{kV}$
- Single sparks with LEM multiplicity of 1 Multiple sparks with multiplicity ≥ 2

ΔV	Duration	Single	Multiple	Total
[kV]	[h]	$[CRP^{-1} \times h^{-1}]$	$[CRP^{-1} \times h^{-1}]$	$[CRP^{-1} \times h^{-1}]$
3.1	21	0.2 ± 0.2	0.0 ± 0.0	0.2 ± 0.2
3.2	23	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
3.3	23	1.0 ± 0.4	0.3 ± 0.2	1.3 ± 0.4
3.4	43	0.5 ± 0.2	0.8 ± 0.3	1.3 ± 0.3
3.5	18	1.1 ± 0.4	4.1 ± 0.9	5.2 ± 1.0

▶ Maximum operation HV is $\Delta V = 3.4 \,\text{kV}$

LEMs sparking rates analysis

- LEMs sparking rates per hour normalised to a full CRP
- Numbers in grey given as an indication (different ∆V or number of LEMs, earlier period)

Spark/CRP/h	Extraction	Cathode	R = 0	$R = 10 M\Omega$	$R = 500 \text{ M}\Omega$
' ' '		ON	1.4 ± 0.2	2.9 ± 0.3	4.6 ± 0.5
	ON	OFF	1.9 ± 0.2	2.6 ± 0.2	$1.0 \pm 0.2 - 1.6 \pm 0.2$
CRP1		ON - OFF	-0.5 ± 0.3	0.3 ± 0.3	3.0 ± 0.5
CRP1		ON		1.2 ± 0.3	1.3 ± 0.3
$\Delta V = 3.1 \text{kV}$	OFF	OFF		0.4 ± 0.2	0.3 ± 0.1
		ON - OFF		0.8 ± 0.3	1.0 ± 0.3
	Extraction	Cathode	R = 0	$R = 10 \text{ M}\Omega$	$R = 500 \text{ M}\Omega$
	Extraction	Cathode ON	R = 0	$R=10 \text{ M}\Omega$ 5.9 ± 0.5	$R = 500 \text{ M}\Omega$ 4.7 ± 0.6
	Extraction ON		R = 0		
CPP2		ON	R = 0	5.9 ± 0.5	4.7 ± 0.6
CRP2		ON OFF	R = 0	5.9 ± 0.5 6.2 ± 0.6	4.7 ± 0.6 3.9 ± 0.7
CRP2 $\Delta V = 3.4 \text{kV}$		ON OFF ON - OFF	R = 0	5.9 ± 0.5 6.2 ± 0.6	4.7 ± 0.6 3.9 ± 0.7 0.8 ± 0.9

- ▶ Larger ΔV across the LEMs \Rightarrow higher sparking rate
- ▶ With extraction: no visible contribution of drift field
- Current limiting resistors value impact sparking rates
- The extraction field seems to increase the sparking rate

LEMs aging during ProtoDUNE-DP operations

 \blacktriangleright Increasing number of LEMs with nominal ΔV below 2.9 kV

▶ To this date, 27 LEMs limited to $\Delta V = 2.9 \text{ kV}$ or less

LEMs aging during ProtoDUNE-DP operations

- Absolute number of sparks per LEMs
- Cumulative for each month of operations
- Large sparking rate on a LEM requires a reduction of the nominal HV
- Red squares highlight LEMs with a nominal ΔV ≤ 2 kV:
 22 % of LEMs as of March
 2020
- ► LEM 18 CRP1 probably aging faster since February
- Close to 50 000 sparks since beginning of operations

LEMs with reduced HV

Cross-check of reduced LEM gain with the point of origin of tracks

- ► LEMs with reduced HV in red (1 to 3.2 kV on bottom electrode)
- ► LEMs set to lower HV as a precaution in yellow
- Lower HV implies reduced amplification on LEMs
- Reduces the active surface of the CRPs
- Mostly LEMs on the edges of the CRPs

CRP gains

- Measurements between September 2019 and January 2020 with cosmics
- lacktriangle Operating conditions: 1045 mbar and \sim 90 K
- ightharpoonup CRP gain: $\epsilon_{\sf extraction} imes {\sf G}_{\sf LEMs,amplification} imes \epsilon_{\sf Q}$ collection (Einduction)
- $ightharpoonup \epsilon_{\text{extraction}}$ estimated to be well above 90%

- November → January: very small reduction
- September → November: Reduction by at least a factor of 2
- Reductions due to charging up effects for designs with rims around holes
- ► Gain a factor of 2 lower than extrapolated from ETHZ measurements (https://arxiv.org/abs/1412.4402)
- Discrepancy not yet understood, dedicated study to come

Electric field inhomogeneity in ProtoDUNE-DP

- ▶ Due to the HV feedthrough incident, electric field very inhomogeneous
- ▶ Different electric field could lead to different CRP gains depending on the position in the detector
- ► Dedicated study to be carried out to help understanding if this can explain the observed CRP gains

³⁹Ar analysis with ProtoDUNE-DP

- ▶ 39 Ar naturally and homogeneously present in Ar: decay rate per CRP = 1.5×10^4 Bq
- Charge deposition constant with time ⇒ calibration of LEM gain and monitoring of space charge effects

- Events selected as isolated hits matched in the two independent views
- Charge sharing between views evenly centered around 50 %

Conclusions

- Extensive LEMs sparking rate studies carried out, and continuing
- ► Promising CRP gain calibration with ³⁹Ar
- CRP gains lower than expected, needs to be understood
- Proof of principle of 300 t DPAr TPC made
- ► LEMs R&D in progress for ProtoDUNE-DP Phase II to improve HV stability, prevent carbonization, increase active area (see talk by A. Delbart)
- System to be upgraded to prevent grid sparking damaging the electronics (see talks by D. Duchesneau & B. Aimard)
- Several difficulties identified and developments in progress to mitigate them (waves, bubbles, filter clogging)
- ► These improvements should help demonstrate the feasibility of a DP module as far detector for DUNE

Thank you for your attention!

Operating principle of ProtoDUNE-DP

Dual Phase

- ▶ 720 t of LAr in a cryostat
- Scintillation light read out at the bottom of the cryostat
- Vertical drift of electrons
- Electrons extracted from liquid into gas phase
- Charge signal amplified and readout
- Dual phase TPC allows 3D reconstruction of tracks in detector

Photodetection system in ProtoDUNE-DP

- ➤ 36 × 8" cryogenic PMTs Hamamatsu R5912-02-mod
- ▶ 7 m below collection plane
- Below cathode and ground grid
- Position optimized for light collection in cosmic rays events
- Wavelength shifter: 30 × PEN and 6 × TPB
- Light Calibration System for PMT stability estimation using blue LEDs and optical fibers

Photodetection system operation

- Scintillation light measured since June 2019
- Data taken almost every day (86 MEvents)
- lacktriangle Very low noise level at 0.6 \pm 0.1 ADC

- S/N > 11 for SPE at $G = 10^7$ (requirement of S/N > 5)
- Baseline (individual fibers + LED) and alternative calibration (top fibers) validated

Sain

10⁸

♦ FA0129

FA0112

1400

HV short cut

- ▶ Short cut between VHV feedthrough and 21st field cage ring
- ▶ HV limited to 150 kV, operated at 50 kV currently

Bubbles in ProtoDUNE-DP

- Bubbles appear above clips of field cage and VHV extender
- Origin of the bubbles still unknown

Effective gain

E. Mazzucato

Cold filters clogging

Purity measurements

Liquid Argon Purity

 \neg LAr purity monitored so far by two 17 cm long PMs located at the bottom of the cryostat and in the middle.

- ¬Recirculation should improve e∾lifetime by factor 2.7 every ₹4.5 days (1 volume recirculated).
- _LAr purity limited so far to about 1.5 ms e~lifetime by several filter clogging and cleaning operations.

