

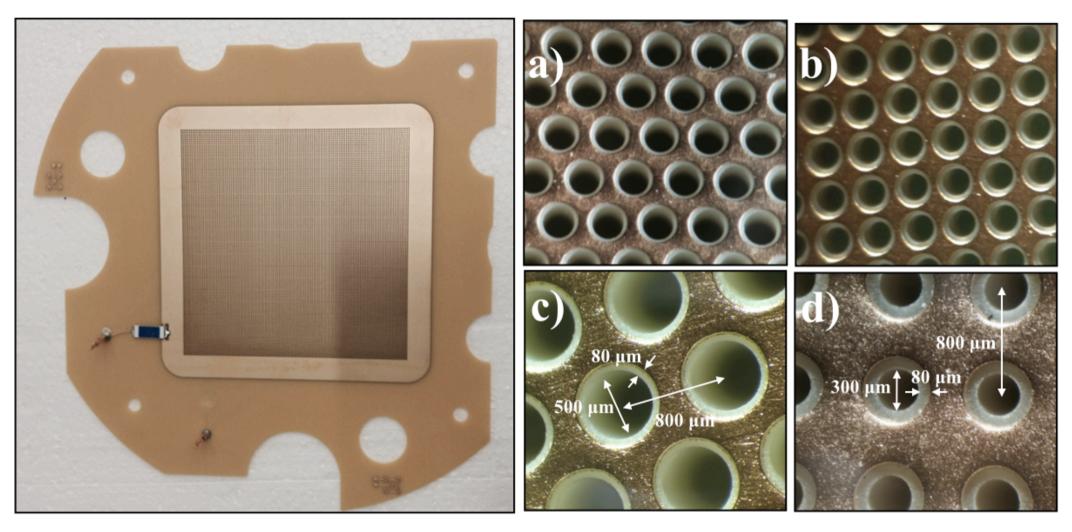
Discussion on LEM performances in ProtoDUNE-DP

LEM production & qualification tests

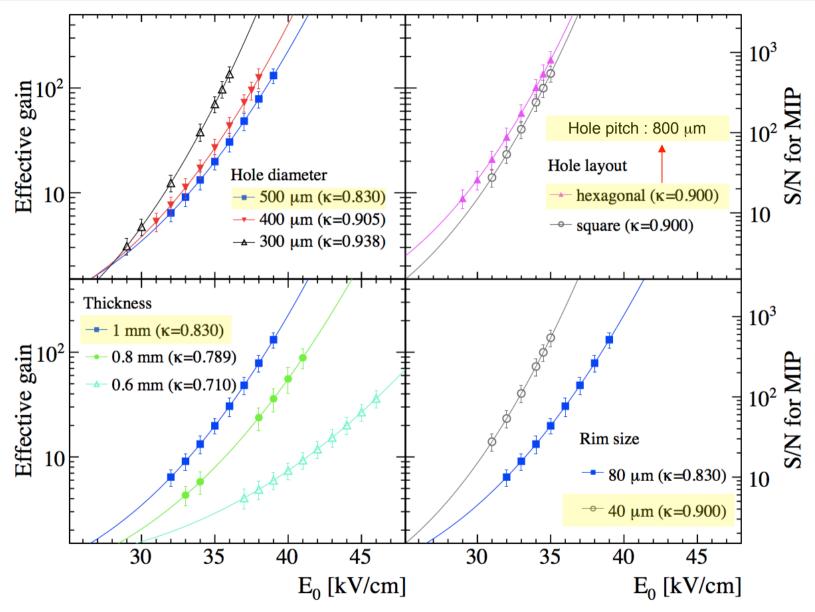
- ✓ Room T + high pressure Vs cryogenic DLAr conditions
- ✓ Where do the 50x50 cm² limitations Vs 10x10 cm² come from : borders, LEM imperfections scaling with surface, higher C, others ?
- ✓ Need of LEM HV qualification by HV burn-in ?
- ✓ What LEM controlled burn-in procedure to use?
 - In air (with O₂) Vs in pure Ar ?
 - How does gas purity affects the process?
 - How to prevent the LEM from irreversible damages?
 - Use experience of carbonized LEM corners recovered from potassium permanganate cleaning for an iterative procedure?
- ✓ Need of final qualification test of CRP in coldbox like setup :
- 4 x LEMs at least, Ar purity, extraction grid, TPC drift E?,

LEM performances

- Observation of spark rate dependence on collection electric field
- > secondary sparks in induction gap? How to mitigate this effect?
- → need of Electric field simulations for further optimization
- ✓ Positive ions feedback and accumulation on Lar surface?
- ✓ LEM ageing but no hint of resistive current between LEM sides?
- ✓ LEM Grid capacitive coupling depending on LAr stability
 - The quenching resistor does not affect LEM & grid the same way
 - Introduction of a coupling capacitance between LEM & Grid?
- ✓ Explanations for 2 times lower gain derivation from cosmic tracks deposition compared to extrapolation of 3L ETHZ DLAr gain ?

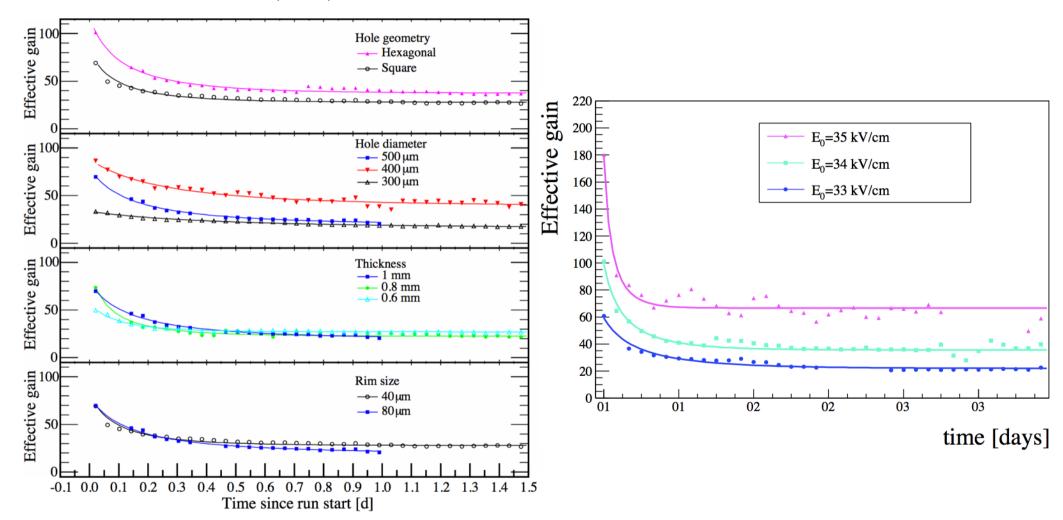


Backup slides for discussion


LEM structural parameters

10x10 cm² with large FR4 border

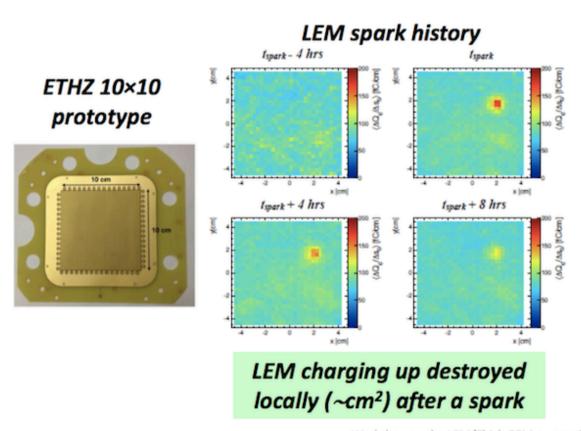
C. Cantini et. Al, « Performance study of the effective gain of the double phase liquid Argon LEM Time Projection Chamber, JINST **10** (2015)


LEM structural parameters

C. Cantini et. Al, « Performance study of the effective gain of the double phase liquid Argon LEM Time Projection Chamber, JINST **10** (2015)

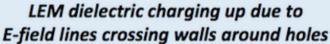
10x10 cm² LEM charging-up

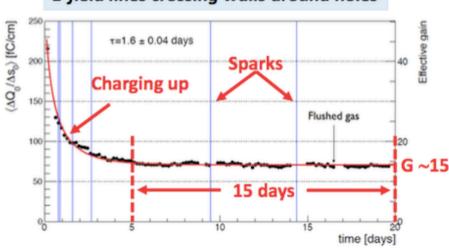
C. Cantini et. Al, JINST 10 (2015)



Charging-up effect on gain drop value & time behaviour depends on amount of FR4 material : RIM size, hole diameter, LEM thickness, density of holes

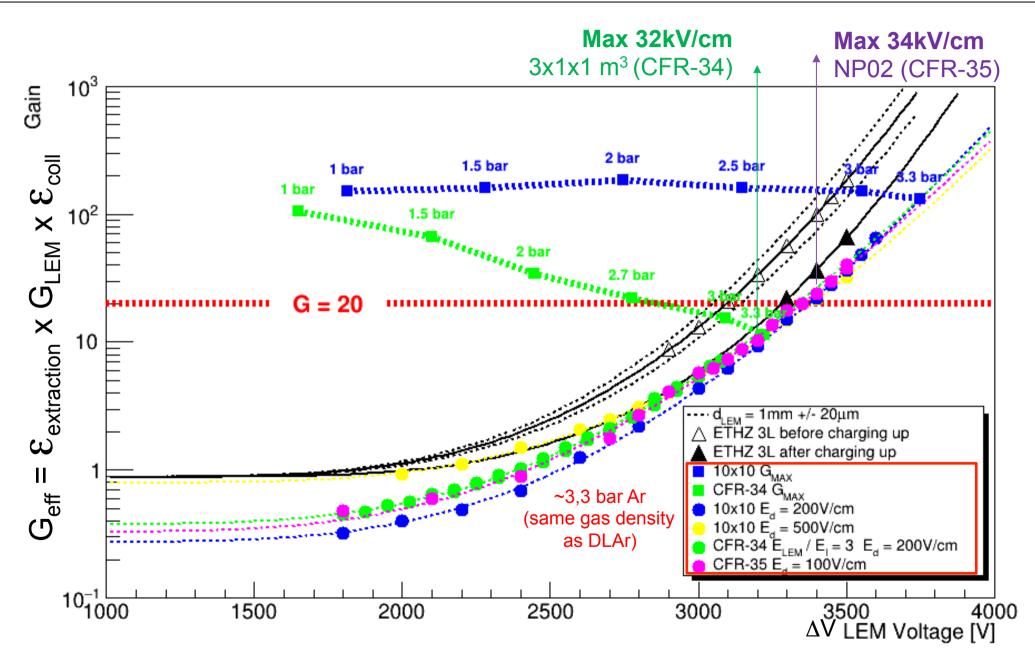
measured ~3.3 in 2-3 h for ProtoDUNE-DP LEMs at Saclay with 251 Am α source


10x10 cm² LEM sparking rate

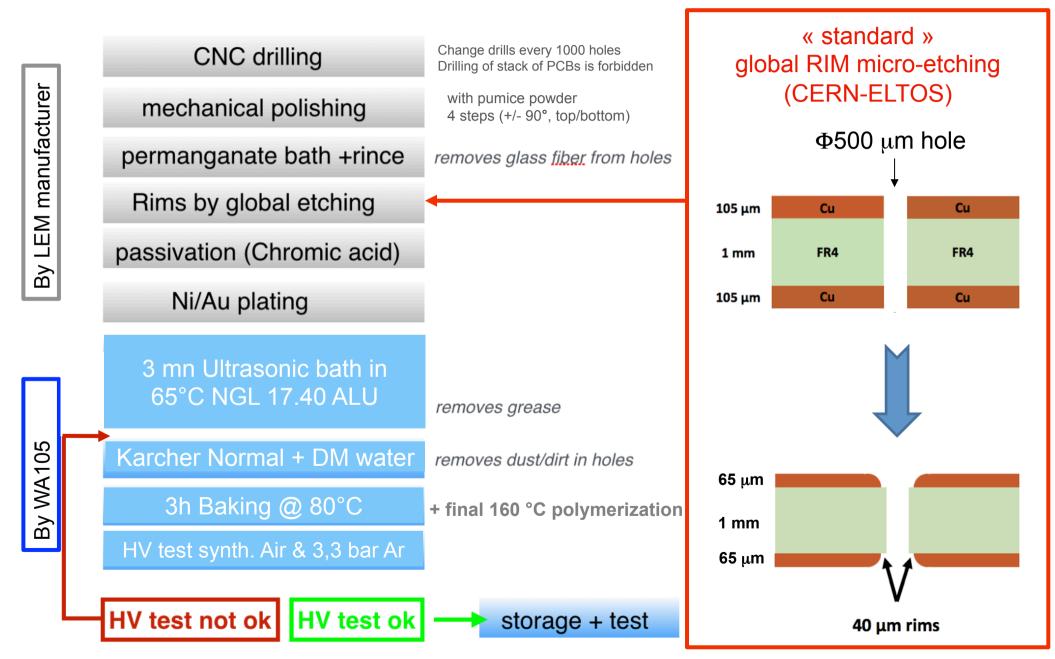

LEM charging up, sparks and long-term performance

06/04/2020

C. Cantini et al., arXiv:1312.6487

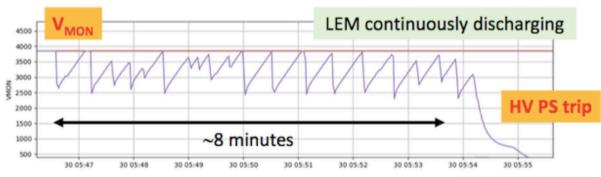


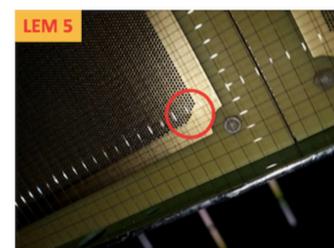
- 2 sparks in 15 days after charging up
- Extrapolation to 3m×3m:
 (5.0±3.5) sparks/h @ G~15


Workshop on the LEM/Thick GEM cryogenic utilization in pure Argon over large detection surfaces

7

LEM Gain compilation




LEM manufacturing & QA/QC

CFR-35 LEM carbonization In coldbox

LEM Carbonization Issues

- Points to a LEM weaker region.
- 5/72 LEMs affected
- Treated with KMnO4 at CERN to remove carbonized FR4 inside holes.
 Copper surface unaffected.
- Cleaned at CEA/irfu and tested up to 3.2kV @ 3.3bar.

Workshop on the LEM/Thick GEM cryogenic utilization in pure Argon over large detection surfaces

23

06/04/2020

Coldbox tests of CRPs

CRP1 and CRP2 LEM HV Test Results in CB (Oct. – Nov./2018)

■ Liquid level in CB stable to within ~250 μ m; T_{LEM} ~ 91°K; $\Delta V_{LEM-GRID}$ = 3kV

CR	P1 V _{TOP} (kV)	V _{BOT} (kV)	E _{LEM} (kV/cm)	Time (h)	Spark Rate (h ⁻¹)	P _{atm} (mbar)	Estimated Gain (no ch. up)
	0.25	3.35	31.0	12	1.3	968 - 972	20
	0.50	3.55-3.60	30.5-31.0	13	1.3	962 - 966	(24 - 31)
	0.75	3.70	29.5	42	0.6	943 - 953	20
	1.00	3.80	28.0	18	2 trips*	970 - 976	9
	1.00	3.85	28.5	12	3 trips	936 - 947	15

* PS TRIP time set too short

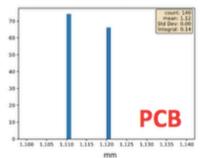
CR	P2 V _{TOP} (kV)	V _{BOT} (kV)	E _{LEM} (kV/cm)	Time (h)	Spark Rate (h ⁻¹)	P _{atm} (mbar)	Estimated Gain (no ch. up)
	0.10	3.15 – 3.20	30.5 – 31.0	17	0.8	969 - 973	9 - 11
	0.25	3.34	30.9	16	1.3	968 – 970	19
	0.50	3.55	30.5	11	0.9	957 – 965	24
	0.50	3.555	30.55	42	0.5	962 – 964	25

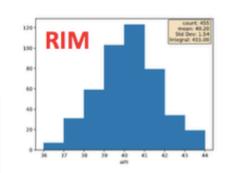
- Effective gain of 20 before charging up within range. Best HV configuration with $V_{TOP} \sim 0.5 kV$.
- For larger V_{TOP} values, need to decrease E_{LEM} to achieve stable operation. $\delta \epsilon_{coll} \sim 0.7$

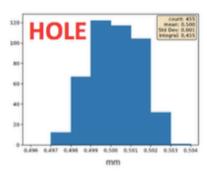
06/04/2020

Workshop on the LEM/Thick GEM cryogenic utilization in pure Argon over large detection surfaces

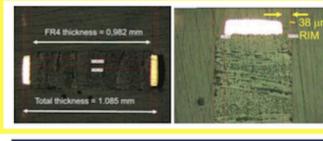
22

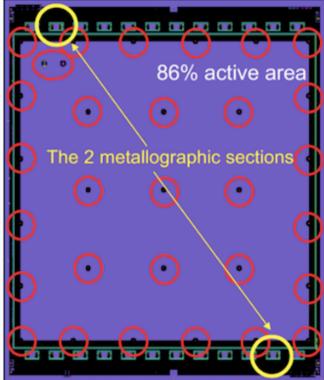

CFR-35 NP02 LEM QC

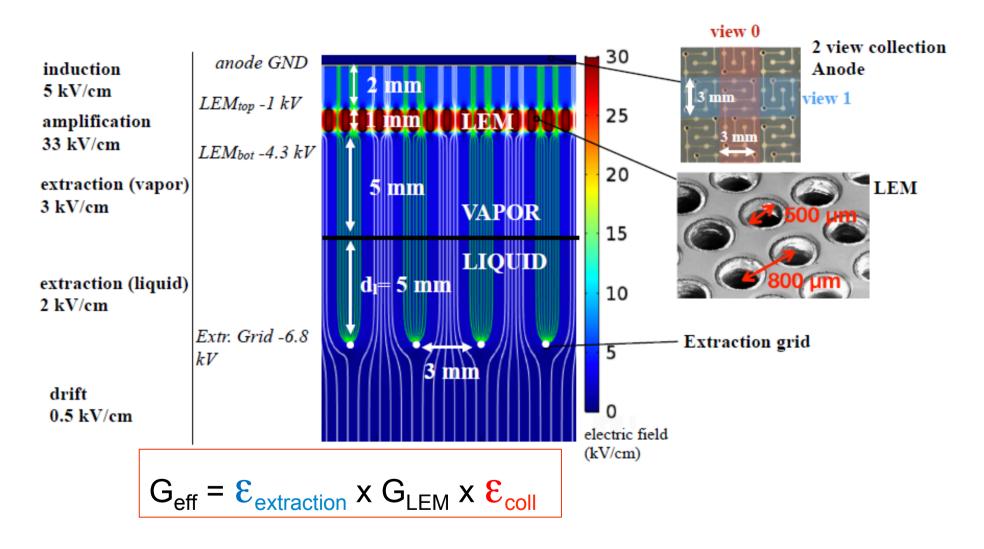

LEM QA/QC by ELTOS


LEM Specifications

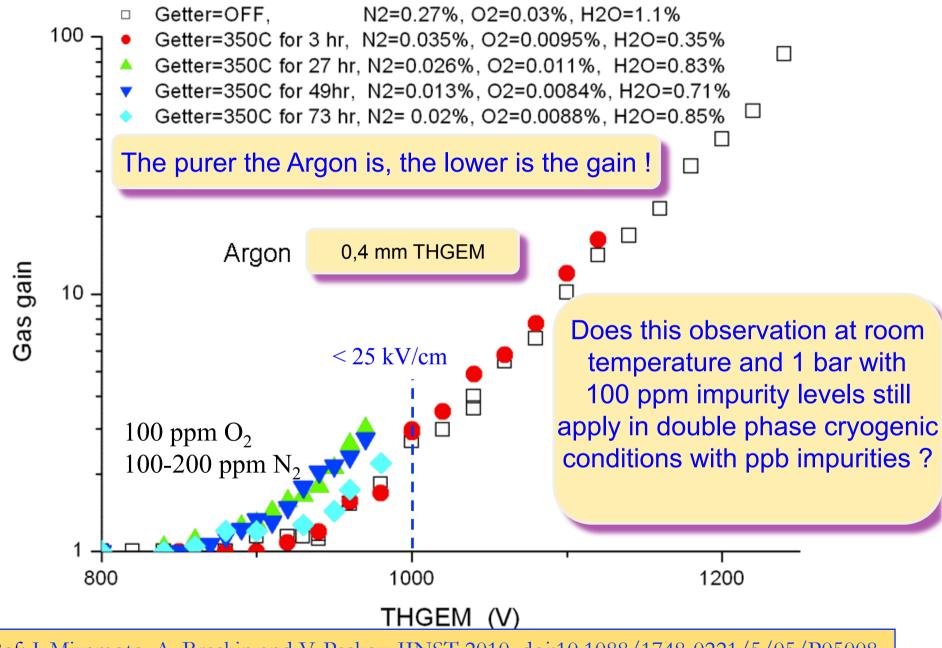
Laminate specifications			
Laminate	FR4 epoxy PANASONIC R-1566W		
Dimensions	530 mm x 540 mm		
Bare FR4 epoxy thickness	1 mm (-0.05 /+0 mm)		
Copper thickness	105 μm		
Mean thickness	1,20 (-0.06/+0) mm		
Thickness uniformity	+/- 0.04 mm		
final LEM specifications			
Dimensions	499.5 mm x 499.5 mm +0/-0.3 mm		
Ni/Au	5 μm Ni + 0.1 μm Au		
Final thickness	1.10 (-0.05/+0.02) mm		
LEM holes	≈ 400 000 non-plated Φ=0.5 mm -0/+0.01 mm		
RIM (with Ni/Au)	40 μm +/- 4 μm		



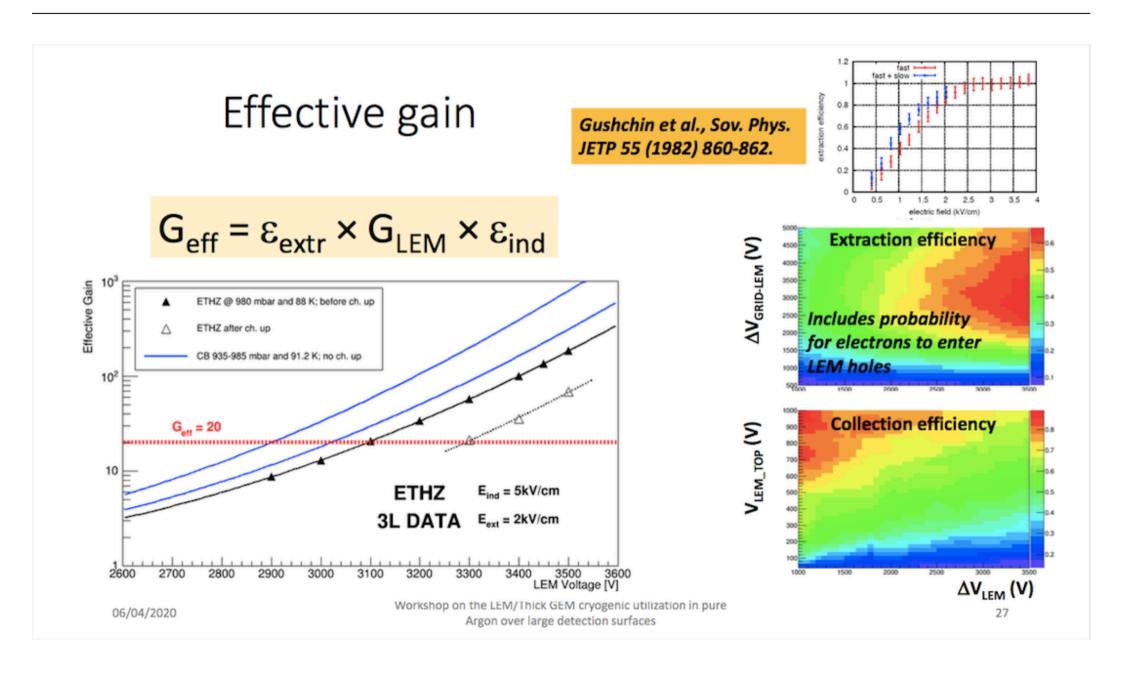




Workshop on the LEM/Thick GEM cryogenic utilization in pure Argon over large detection surfaces


18

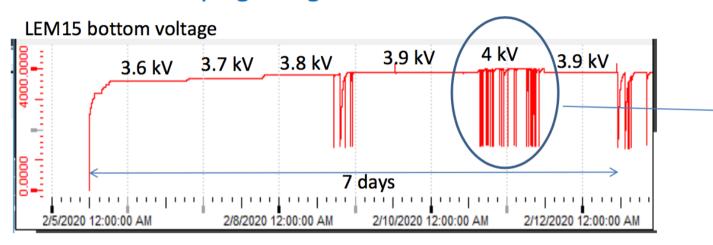
Electric field configuration


Effect of the collection electric field E_{coll} : 5 kV/cm is the baseline for maximum collection Have to lower E_{coll} to 2,5 kV/cm in Dlar NP02 conditions for stability (ϵ_{coll} ~0,7)

Gain limits in pure Argon: a possible explanation?

Ref: J. Miyamoto, A. Breskin and V. Peskov, JINST 2010, doi:10.1088/1748-0221/5/05/P05008

Effective gain



LEM stability & maximum High-voltage

CRP Stability tests

maximal LEM operation voltage

CRP2 LEM slow ramping to highest HV:

Spark rate at $\Delta V = 3.5 \text{ kV}$ corresponds to about 5 /h/CRP

G. Eurin, P. Granger

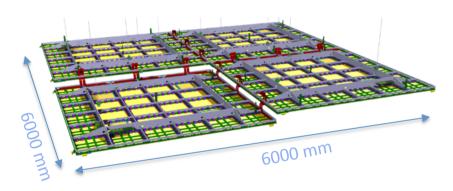
From tests done on February:

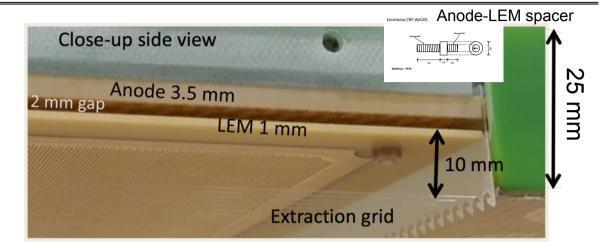
With more than 20 hours between 100 V step

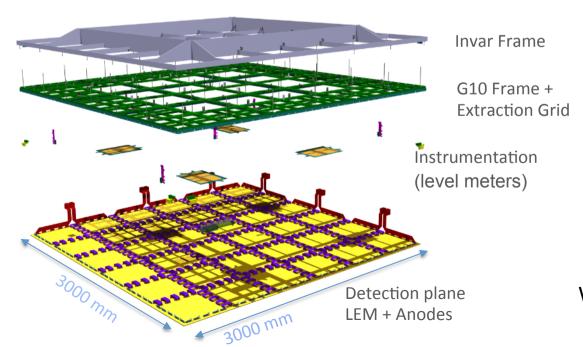
CRP2 grid HV was set equal to LEM bottom HV => No extraction field for the high voltage LEMs

ΔV	duration	Single	Multiple	Total
3100 V	20.83 h	0.16 ± 0.16	0.00 ± 0.00	0.16 ± 0.16
3200 V	23.00 h	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
3300 V	23.42 h	0.98 ± 0.37	0.28 ± 0.20	1.26 ± 0.42
3400 V	60.50 h	0.39 ± 0.15	0.54 ± 0.17	0.93 ± 0.23
3500 V	18.33 h	1.07 ± 0.44	4.11 ± 0.86	5.18 ± 0.96

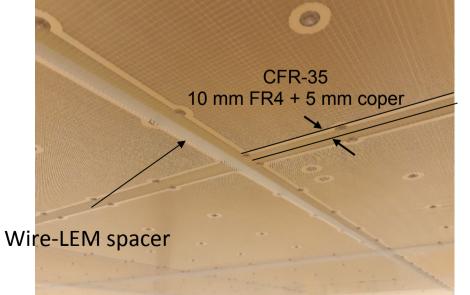
Result:


The maximal LEM operation voltage that can be achieved in stable conditions with the LEMs acting as an isolated system in absence of extraction is **3.4 kV across**

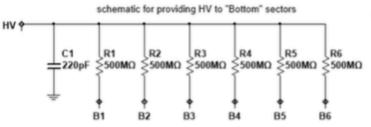

Νο λαργε εφφεχτο ωηεν τηε εξτραχτιον ανδ τηε δριφτ φιελδ αρε τυρνεδ ον

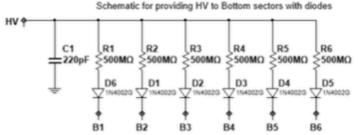

=> νο ηιντο οφ ινσταβιλιτιεσ ρελατεδ το αχχυμυλατιον οφ ποσιτιπε ιονο οπερ λονγ τιμε περιοδο (

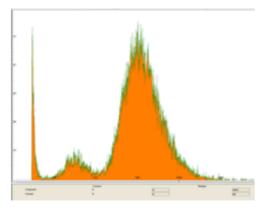
The LEM arrangement on CRP


ProtoDUNE-DP / 4 independant CRPs

64 wires/module - 1.5N tension (3.5N @ 87K)

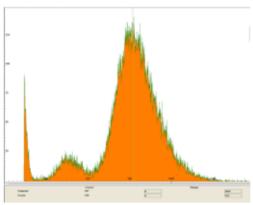

INFN/COMPAS-RICH THGEM HV distribution


HV distribution to the THGEM, the issue of discharge propagation between sectors, a possible wayout



Discharge effect propagation from one sector to others (also non adjacent ones!) lowering voltage and reducing the neighboring sectors efficiency

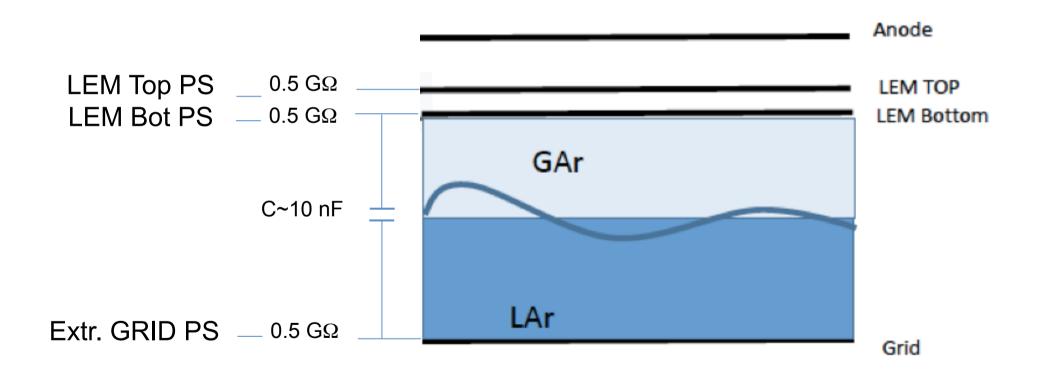
HV distribution suspected.



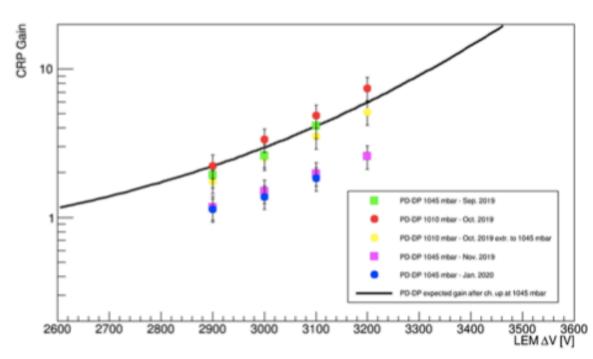
Collect spectra on one sector before and after a trip occurs in another sector (induced)

Comparison of the two spectra just before and after a trip in next to it sector.

Analogous scheme also for the top

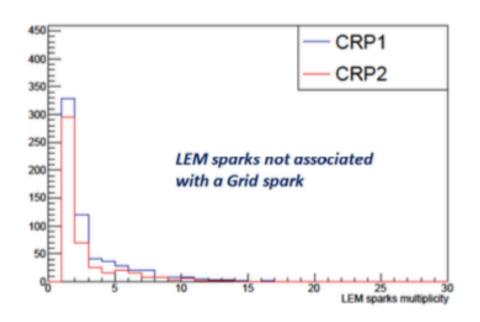

Diode: VS-20ETS High Voltage, Input Rectifier Diode

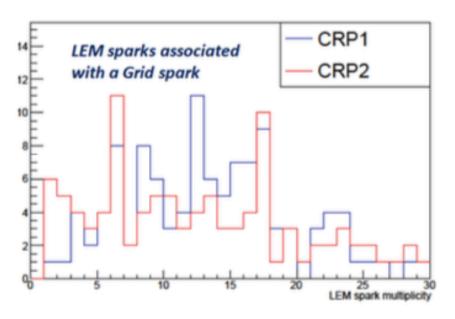
Instrumentation Days on Gaseous Detectors - 12-13 octobre 2016 - Campus Cézeaux, Université Blaise Pascal, Clermont-Fd - Stefano Levorato


38

LEM – extraction Grid coupling

CRP gains


- Measurements between September 2019 and January 2020 with cosmics
- ightharpoonup Operating conditions: 1045 mbar and \sim 90 K
- $ightharpoonup CRP gain: \epsilon_{\text{extraction}} imes G_{\text{LEMs,amplification}} imes \epsilon_{\text{Q collection}}(E_{\text{induction}})$
- $ightharpoonup \epsilon_{\rm extraction}$ estimated to be well above 90%



- November → January: very small reduction
- September → November: Reduction by at least a factor of 2
- Reductions due to charging up effects for designs with rims around holes
- Gain a factor of 2 lower than extrapolated from ETHZ measurements
- Discrepancy not yet understood, dedicated measurement planned in the near future

Sparking events during CRP operation

- Two types defined: grid+LEMs and LEMs-only
- LEM multiplicity: number of LEMs sparking simultaneously

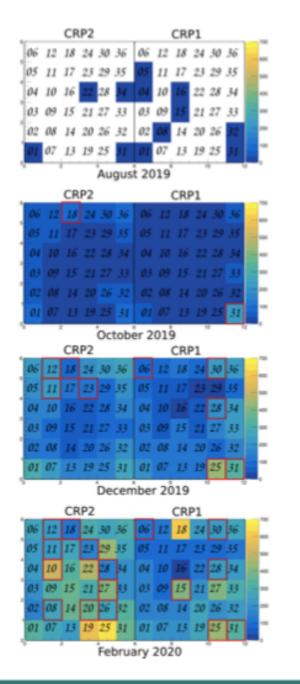
- Grid sparking events: can reach very high multiplicities
- LEMs-only sparking events: limited to a few LEMs, mostly neighbouring ones
- Discrepancy points toward different origins for both types

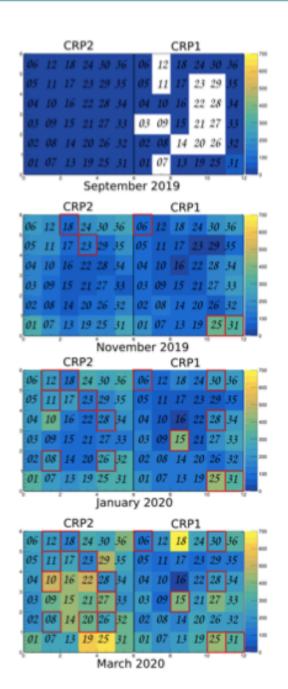
Grid sparking

Grid sparking analysis during long-term stability tests

	Extraction	Cathode	R = 0	$R = 10 M\Omega$	$R = 500 M\Omega$
		ON	0.63 ± 0.08	0.37 ± 0.06	0.38 ± 0.11
	ON	OFF	0.26 ± 0.05	0.24 ± 0.03	$0.20 \pm 0.05 - 0.24 \pm 0.09$
CRP1		ON - OFF	0.37 ± 0.09	0.13 ± 0.07	0.14 ± 0.14
$\Delta V = 3.1 \text{kV}$	OFF	ON		<0.07 @ 90 % C.L.	< 0.06 @ 90 % C.L.
$\Delta V = 3.1 \text{KV}$	OFF	OFF		<0.10 @ 90 % C.L.	<0.10 @ 90 % C.L.
	Extraction	Cathode	No resistors	10 MΩ resistors	500 MΩ resistors
		ON		0.47 ± 0.06	0.89 ± 0.15
	ON	OFF		0.39 ± 0.07	0.86 ± 0.18
CRP2		ON - OFF		0.08 ± 0.09	0.03 ± 0.24
CRF2		ON			0.02 ± 0.02
$\Delta V = 3.4 \mathrm{kV}$	OFF	OFF			0.00 ± 0.00
		ON-OFF			0.02 ± 0.02

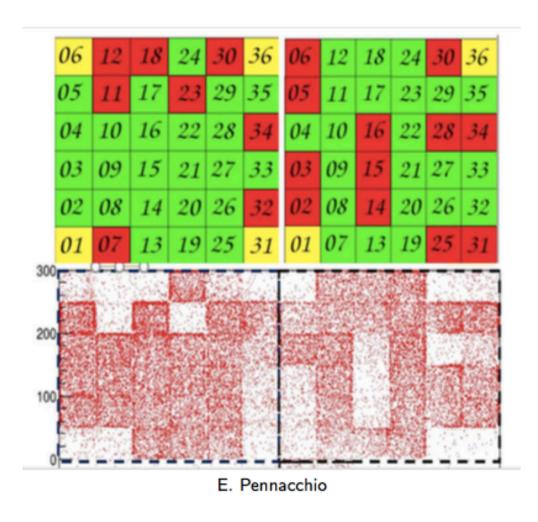
- ightharpoonup Extraction field OFF \Rightarrow rate consistent with zero, independent from LEMs ΔV , current limiting resistors and drift
- ▶ Extraction field ON \Rightarrow rate \in [0.2, 0.9] spark per hour
- With extraction, sparks due to LEMs-grid coupling
- No evidence for an impact of the drift field
- \blacktriangleright Factor of 2 reduction with resistors from 500 M Ω to 10 M Ω


Sparking rates analysis


- LEMs sparking rates per hour normalised to a full CRP
- Numbers in grey given as an indication (different ΔV or number of LEMs, earlier period)

	Extraction	Cathode	R = 0	$R = 10 \ M\Omega$	$R = 500 \text{ M}\Omega$
		ON	1.4 ± 0.2	2.9 ± 0.3	4.6 ± 0.5
	ON	OFF	1.9 ± 0.2	2.6 ± 0.2	$1.0 \pm 0.2 - 1.6 \pm 0.2$
CRP1		ON - OFF	-0.5 ± 0.3	0.3 ± 0.3	3.0 ± 0.5
CINIT		ON		1.2 ± 0.3	1.3 ± 0.3
$\Delta V = 3.1 \text{kV}$	OFF	OFF		0.4 ± 0.2	0.3 ± 0.1
		ON - OFF		0.8 ± 0.3	1.0 ± 0.3
	Extraction	Cathode	R = 0	$R = 10 M\Omega$	$R = 500 M\Omega$
		ON		5.9 ± 0.5	4.7 ± 0.6
	ON	OFF		6.2 ± 0.6	3.9 ± 0.7
CRP2		ON - OFF		-0.3 ± 0.8	0.8 ± 0.9
CKFZ		ON			5.4 ± 0.5
$\Delta V = 3.4 \mathrm{kV}$	OFF	OFF			0.9 ± 0.2
		ON - OFF			4.4 ± 0.6

- ▶ Larger ΔV across the LEMs \Rightarrow higher sparking rate
- With extraction: no visible contribution of drifted ions
- Current limiting resistors value impact sparking rates
- The extraction field seems to increase the sparking rate


LEMs aging during ProtoDUNE-DP operations

- Absolute number of sparks per LEMs
- Cumulative for each month of operations
- Large sparking rate on a LEM requires a reduction of the nominal HV
- Red squares highlight LEMs with a nominal ΔV ≤ 2 kV: 22 % of LEMs as of March 2020
- LEM 18 CRP1 probably aging faster since February
- Close to 50 000 sparks since beginning of operations

LEMs with reduced HV

Cross-check of reduced LEM gain with the point of origin of tracks

- LEMs with reduced HV in red (1 to 3.2 kV on bottom electrode)
- LEMs set to lower HV as a precaution in yellow
- Lower HV implies reduced amplification on LEMs
- Reduces the active surface of the CRPs
- Mostly LEMs on the edges of the CRPs