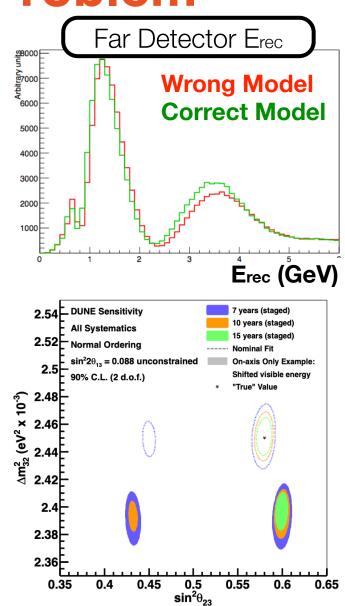

DUNE-PRISM Physics Goals


Mike Wilking Stony Brook University DUNE-PRISM Engineering Meeting March 20th, 2020

The E_v Measurement Problem

- It is very difficult to measure neutrino energy (E_v) by looking at the particles we can measure
 - Much of the energy is missing
- We try to model the relationship between E_v and what we see, but our models are not very accurate
- With a near detector that only sits in 1 position, it is possible to construct a model that matches our near detector data, but still incorrectly predicts what we should see at the far detector
 - This causes us to get the wrong answer for the main parameters we are trying to measure

DUNE-PRISM

- By changing the off-axis angle of the detector, it is possible to sample a continuously changing energy spectrum
- This provides a strong constraint on the $E_{true} \rightarrow E_{rec}$ relationship

ND

Positic

ND 30 m Off Axis

Flux

@ 3°

2

<u>×10⁻⁹</u>

30F

20

10

 Φ_v (cm⁻² per POT per 1 GeV)

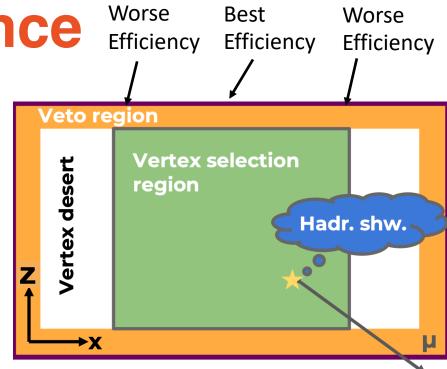
×10⁻⁹

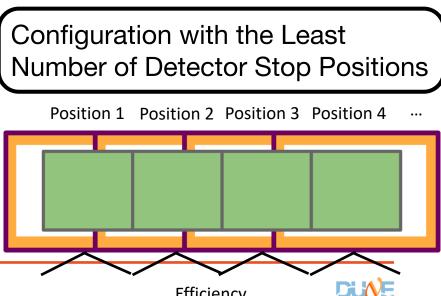
GeV)

POT per 1 30

per 10

 $\Phi_v (cm^{-2}$


3 4 *E*_v (GeV)


40

20F

Detector Acceptance

- We have to reject events with hadronic energy in outer ~30 cm
 - Otherwise, we can't guarantee that we've contained all of the energy
- This means that events near the edge of the detector have worse efficiency
 - This is not desirable, since our ability to correct for this effect depends on the same poor models we are trying to avoid
- This means we don't want to repeatedly put the detector in the same off-axis positions
- The requirement is be able to place the detector in an arbitrary position to within 1 cm, and to be able to measure the detector position to within 1 mm

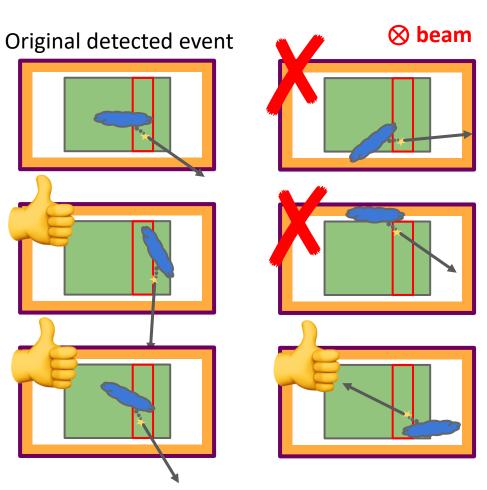
Efficiency

Detector Movement

- To cover the full off-axis range in 1 year, we would likely need to move the detector weekly
 - From a physics point of view, more positions = smoother efficiency
 - In the continuum limit, we would ideally take data while the detector is moving (what is the minimum speed with which we can move?)
- Our working requirement is to be able to stop data taking, move the detector to any new position, and begin taking high quality physics data within an 8 hour shift
 - Need to minimize movement preparation time, and startup time at new location (e.g. MPD magnet may need to be ramped down and back up)
 - Design goal: avoid disturbing the detector as much as possible for a move (i.e. avoid connecting/disconnecting, shutting off systems, etc.)
- Assuming 1 hour before and after the move, this leaves 6 hours to move a maximum of 30.5 m (30 m / 5 hr = 10 cm/min)
 - Accelerations should be gentle to avoid disturbing the detectors, which helps to minimize the startup time at a new location (and to avoid sloshing)
- The LAr and MPD must maintain their relative alignment to ~1 mm

DUNE-PRISM "Wishlist" Summary

- Max speed: ~10 cm/min (30 m in 5 hours); depends on movement preparation time
 - Min speed? 1 cm/min? 1 mm/min?
- <u>Acceleration</u>: gentle ramp up, reaching top speed over several minutes
 - No "jerking" behavior
- <u>Vibrations</u>: "minimized"; minimal disruption to detector systems during movement
 - Must minimize downtime due to detector "ramp down", and in getting detectors ready to take physics-quality data at a new location (depends on detector operation details)
 - e.g. possibly implement "brushes" to clean the rails as the detector moves
- <u>Positioning</u>: placement to within 1 cm; position determination to within 1 mm
 - We will almost certainly want a laser positioning system
 - Both platforms (LAr + MPD) must stay synchronized to ~1 mm
- <u>Movement frequency</u>: at least weekly
 - Fully automated (no person present; can be moved from the external control room)
- Monitoring: must ensure no relative displacement of detector components before/after movement


Example Run Plan

- The DUNE-PRISM run plan has not yet been optimized
 - Working assumption of 50% running on-axis (e.g. for sufficient statistics for nu-e elastic scattering flux constraint)
 - 50% off-axis, split between off-axis positions
- Low backgrounds and high statistics in each off-axis position

		Liquid				Gas	
		All int.	Selected			All int.	
Stop	Run duration	$N\nu_{\mu}CC$	NSel	WSB	NC	$N\nu_{\mu}CC$	
0 m	1/2 yr.	22.2M	9.8M	0.2%	1.6%	590,000	NSel =
$4\mathrm{m}$	$^{1/16}$ yr.	$2.4\mathrm{M}$	$1.2\mathrm{M}$	0.3%	1.2%	$63,\!000$	Number of Selected events
8 m	$^{1}/_{16}$ yr.	$1.4\mathrm{M}$	690,000	0.4%	1.1%	$37,\!000$	
$12\mathrm{m}$	$^{1}/_{16}$ yr.	680,000	340,000	0.8%	0.9%	$18,\!000$	WSB =
16 m	$^{1}/_{16}$ yr.	370,000	190,000	1.0%	0.8%	$10,\!000$	wrong-sign
20 m	$^{1}/_{16}$ yr.	$220,\!000$	110,000	1.3%	0.9%	$6,\!000$	background
24 m	$^{1}/_{16}$ yr.	140,000	$68,\!000$	1.8%	0.8%	4,000	NC =
28 m	$^{1}/_{16}$ yr.	$95,\!000$	44,000	2.2%	0.9%	$3,\!000$	neutral
$32\mathrm{m}$	$^{1/16}$ yr.	68,000	$30,\!000$	2.5%	0.9%	$2,\!000$	current

Geometrical Efficiency Correction

- Model dependence can be further reduced by empirically determining the efficiency of each event
- Every observed event can be rotated about the neutrino direction, and translated within a logical off-axis slice
 - "Efficiency correction" = probability to detect the event
- A model-based correction is needed for events that would never be seen in the ND
 - (applies to all near/far analyses)

Efficiency = accepted / all