
https://root.cern

ROOT
Data Analysis Framework

ROOT I/O

Philippe Canal and Jakob Blomer for the ROOT Team

https://root.cern

Resources

🔹 ROOT Website: https://root.cern
🔹 Introduction material: https://root.cern/getting-started

● Includes a booklet for beginners: the “ROOT Primer”

🔹 Reference Guide: https://root.cern/doc/master/index.html
🔹 Training material: https://github.com/root-project/training
🔹 Forum: https://root-forum.cern.ch

2

https://root.cern
https://root.cern/getting-started
https://root.cern/doc/master/index.html
https://github.com/root-project/training
https://root-forum.cern.ch

ROOT Application Domains

3

Event Filtering

Data RecoRaw
Analysis
Formats… Images

Data Storage: Local, Network

Reconstruction

Further
processing,
skimming

Offline Processing

Analysis

Event
Selection,
statistical

treatment …

A selection of the
experiments
adopting ROOT

Interpreter

🔹 ROOT has a built-in interpreter : Cling
● C++ interpretation: highly non trivial and not foreseen by the language!
● One of its kind: Just In Time (JIT) compilation
● A C++ interactive shell

🔹 Can interpret “macros” (non compiled programs)
● Rapid prototyping possible

🔹 ROOT provides also Python bindings
● Can use Python interpreter directly after a simple import ROOT
● Possible to “mix” the two languages (see more later)

4

$ root

root[0] 3 * 3

(const int) 9

Persistency or Input/Output (I/O)

🔹 ROOT offers the possibility to write C++ objects into files
● This is impossible with C++ alone
● Used the LHC detectors to write several petabytes per year

🔹 Achieved with serialization of the objects using the reflection
capabilities, ultimately provided by the interpreter
● Raw and column-wise streaming
● No explicit instrumentation needed in most cases.

🔹 As simple as this for ROOT objects: one method -
TDirectoryFile::WriteObject

5

Cornerstone for storage
of experimental data

Parallelism

🔹 Ongoing efforts to provide means for parallelisation in ROOT
🔹 Explicit parallelism

● TThreadExecutor and TProcessExecutor
● Protection of resources

🔹 Implicit parallelism
● RDataFrame: Declarative Parallel analysis
● TTreeProcessor: process tree events in parallel
● TTree::GetEntry: process of tree branches in parallel

🔹 Parallelism is a prerequisite element for tackling data analysis during
LHC Run III and HL-LHC

6

Reading and Writing Data

7

I/O at LHC: an Example

8

Event Filtering

Data RecoRaw
Analysis
Formats… Images

Data Storage: Local, Network

Reconstruction

Further
processing,
skimming

Offline Processing

Analysis

Event
Selection,
statistical

treatment …

A selection of the
experiments
adopting ROOT

The ROOT File

🔹 In ROOT, objects are written in files*
🔹 ROOT provides its file class: the TFile
🔹 TFiles are binary and have: a header, records and can be compressed

(transparently for the user)
🔹 TFiles have a logical “file system like” structure

● e.g. directory hierarchy
🔹 TFiles are self-descriptive:

● Can be read without the code of the objects streamed into them
● E.g. can be read from JavaScript

* this is an understatement - we’ll not go into the details.

9

Flavour of TFiles

10

ROOT File Description

11

A Well Documented File Format

12

How Does it Work in a Nutshell?

🔹 C++ does not support native I/O of its objects

🔹 Key ingredient: reflection information - Provided by ROOT
● What are the data members of the class of which this object is instance? I.e.

How does the object look in memory?

🔹 The steps, from memory to disk:
1. Serialisation: from an object in memory to a blob of bytes
2. Compression: use an algorithm to reduce size of the blob (e.g. zip, lzma, lz4)
3. Writing to the physical resource (disk) via OS primitives

13

Serialisation: not a trivial task
For example:

🔹 Must be platform independent: e.g. 32bits, 64bits
● Remove padding if present, little endian/big endian

🔹 Must follow pointers correctly
● And avoid loops ;)

🔹 Must treat stl constructs
🔹 Support for custom serialization of numerical type

● For example floating point that are double precision in memory stored in only 4 bytes
🔹 Support for schema evolution

● Object shape different on file and on disk.
🔹 Must take into account customisations by the user

● E.g. skip “transient data members”

● I/O customization rule (transformation of data)
14

Persistency

15

C++
Classes/structs

Interfaces
(e.g. header files)

XML/C++
Selection metadata
(transient members,

versioning, morphing)

Dictionary
generation

C++
Dictionary (info for

registration of
classes in ROOT

Core)

C++
Classes/structs

implementations

Compiler

Shared
Library

Injection of Reflection Information

16

Needed, Discovered, Loaded

Now ROOT “knows” how to serialise the instances implemented in the library (series
of data members, type, transiency) and to write them on disk in row or column
format.

The ROOT Columnar Format

17

Columns and Rows

🔹 High Energy Physics: many statistically independent
collision events

🔹 Create an event class, serialise and write out N instances
on a file? No. Very inefficient!

🔹 Organise the dataset in columns

18

Columnar Representation

pt_x pt_y pt_z theta

entries
or events
or rows

→

columns
or “branches”←

19

can contain any kind
of c++ object

20

Relations Among Columns

TTree

A columnar dataset in ROOT is represented by TTree:
🔹 Also called tree, columns also called branches
🔹 An object type per column, any type of object
🔹 One row per entry (or, in collider physics, event)

21

Anatomy of a File

22

Branch #1
Entries 0 .. N-1

File
Header

#2
0 .. N-1

#3
0 .. N-1

#1
N ... 2N-1

#2
N .. 2N-1

#3
N .. 2N-1

Cluster Cluster

TTree
Meta Data

File
Schema
Evolution
Support

#1
4N ...

#2
4N ...

#3
4N …

Cluster
#1

3N ...

#2
3N
…

#3
3N
…

Cluster

#1
2N ... 3N-1

#2
2N .. 3N-1

#3
2N .. 3N-1

Cluster

#1
5N ...

#2
5N ...

#3
5N ...

Cluster

#1
6N ... 6.9*N-1

#2
6N …

#3
6N …

Cluster
#1

7N …
#2

7N …

#3
7N
…

Cluster
#1

6.9*N ...

BasketBasket Basket Basket

ROOT File Description

23

Optimal Runtime and Storage Usage

Runtime:
🔹 Can decide what columns to read
🔹 Prefetching, read-ahead optimisations
Storage Usage:
🔹 Run-length Encoding (RLE). Compression of individual

columns values is very efficient
● Physics values: potentially all “similar”, e.g. within a few orders of

magnitude - position, momentum, charge, index

24

Comparison With Other I/O Systems

25J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

https://indico.cern.ch/event/567550/contributions/2628878/

Comparison With Other I/O Systems

26J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

https://indico.cern.ch/event/567550/contributions/2628878/

Comparison With Other I/O Systems

27J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

https://indico.cern.ch/event/567550/contributions/2628878/

I/O Patterns

28J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

The less you read (red sections),
the faster

https://indico.cern.ch/event/567550/contributions/2628878/

Many writers?

29

ROOT Files vs Multiple Writers

🔹 ROOT Files inherently deals with variable size records
● Data frequently contains variable size collection

● Compression done inline

● For each branch/column data store in ‘bunch’ of several entries/row,
named a ‘Basket’; this is the unit of compression.

🔹 Pre-reservation of file space not an option

30

Final File

Old Fashion Arrangement

31

Client

Client

Client
Server

Fast Merging
🔹 ROOT Files can be ‘fast’ merged by ‘only’

● Copying/appending the compressed data (baskets)

● Updating the meta data (TTree object)

● In first approximation we reach disk bandwith

• Actually … half … since we read then write.

🔹 Leverage this capability and use in-memory file to add
support for multiple writers to the same file
● Multi-thread in production

● MPI prototype
32

With Parallel Merging

33

Client

Client

Client

Server

With Parallel Merging

34

Client

Client

Client

Server

With Parallel Merging

35

Final File

Client

Client

Client

Server

With Parallel Merging

36

Final File

Client

Client

Client

Server

With Parallel Merging

37

Final File

Client

Client

Client

Server

With Parallel Merging

38

Final File

Client

Client

Client

Server

With Parallel Merging

39

Final File

Client

Client

Client

Server

TBufferMerger

40

Worker Thread

Data
Buffer

Worker Thread
Worker Thread

Worker Thread

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Merge()

Disk

Data
Buffer

Data Queue Data
Buffer

TBufferMerger

Data
BufferData

BufferWorker Thread

Data
Buffer

Write()

TBufferMerger Single Branch Benchmark

🔹 Create ~1GB of simple data and write out to different media using
different compression algorithms

🔹 Measured time to flush disk cache is negligible compared to runtime
🔹 Synthetic benchmark that exacerbates the role of I/O by doing light

amount of work (generating a random number)
🔹 Test environment

● Intel® CoreTM i7-7820X Processor (8 cores, 11M Cache, up to 4.30 GHz)

● Write out data to HDD, NVMe SSD, DRAM

● Compare compression algorithms: LZ4, ZLIB, LZMA, no compression

● GCC 8.1.0, C++17, -O3 -march=native (skylake-avx512), release build

6

Single Branch Benchmark: Speedup

42All figures using ROOT master branch

MPI Prototype: Basic Structure

43

Worker (Process 1)

Worker (Process 2)

Worker (Process 3)

Collector (Process 4)

MPI

MPI

MPI

Workers:
• Process Events (Populate TTrees

or TH1D’s)
• Send Processed Events to

Collector Using MPI functionalities

Collectors:
• Receive Processed Events from

Workers
• Merge them
• Write into disk

Communication is done via MPI
functionalities

Reading/Writing into buffer is done using
TMemFile functionalities

Each of the workers and collectors is one
unique MPI Process or Rank.

MPI Prototype: Basic Structure

44

Worker

Worker

Worker

Worker

Worker

Worker

Collector

Collector

Processes can be divided into many
worker/processor sub groups and do multiple

parallel merging.

Additional Note

🔹 TFile WriteCache
● Allow delaying and coalescing the write at the cost of more memory
● Not often used as gain is minimal on a single disk and memory often

tight

🔹 FastMerge mechanism can
● Collect and reorganize how the baskets are layout on the file

🔹 And could
● Delay, coalesce or even distribute the actual writing

RNTuple: Evolution of the TTree I/O

46

RNTuple Introduction

47

🔹 ROOT’s new, experimental I/O subsystem

🔹 Based on 20 years of TTree experience

🔹 Incorporates recent ideas on columnar file formats (e.g. Apache Arrow)

🔹 Interface modernization

🔹 Backwards-incompatible file format adjustment
● But can still using regular ROOT TFile as a container format

🔹 Motivated by massively higher data rates of HL-LHC

🔹 From the ground up designed for modern devices and systems:

SSDs, NV-RAM, object stores

RNTuple Class Design

48

Modular storage layer that support
files as data containers but also
file-less systems (object stores)

Currently in touch with Intel DAOS
engineers on RNTuple integration

RNTuple Format Breakdown

49

Cluster:
🔹 Block of consecutive complete events
🔹 Unit of thread parallelization (read & write)
🔹 Typically tens of megabytes
🔹

Page:
🔹 Unit of memory mapping or (de)compression
🔹 Typically tens of kilobytes
🔹 Naturally representable by an object, e.g. in

the DAOS object store (under investigation)

RNTuple Format Evolution

50

🔹 Key binary layout changes wrt.
TTree

● More efficient nested collections
● More efficient boolean values

(bitfield), interesting for trigger bits
● Little-endian values (allows for

mmap())
● Better control of I/O memory

Implementation uses templates to
slash memory copies and virtual

function calls in common I/O paths

🔹 Supported type system
● Boolean
● Integers, floating point
● std::string
● std::vector, std::array
● std::variant
● User-defined classes
● More classes planned (e.g.

std::chrono)

Fully composable within the
supported type system

Selected RNTuple Benchmarks

51

Selected RNTuple Benchmarks

52

Selected RNTuple Benchmarks

53

ROOT I/O

🔹 Write almost any C++ objects/data into files
● Used the LHC detectors to write several petabytes per year

🔹 Leverage Cling C++ reflection capabilities
🔹 Object-wise and column-wise streaming
🔹 Very efficient in space and run-time
🔹 Multiple writers support

● Multi-thread in production

● Multi-process (via MPI) in prototype

🔹 Multiple language support, ROOT files can be read in:

● C++, Python, JavaScript

● Java, Go, even Rust (Contributions)
54

Backup slides

55

https://root.cern

ROOT
Data Analysis Framework

CREDITS
E. Tejedor, D. Piparo, G. Amadio, A Bashyal and the rest of the ROOT

Team

https://root.cern

Fast Histogramming with TBrowser

57

TBufferMerger Multi Branch Benchmark

🔹 Create 1GB of complex data and write out to different media using different
compression algorithms

🔹 Synthetic benchmark to investigate what changes with added data complexity vs
previous benchmark, IMT disabled but speedups are similar

🔹 1 branch = std::vector<Event> (3x Vector3D, 3x double, 3x int)

🔹 Data compresses better, so uncompressed is writing more output

🔹 Test environment

• Intel® CoreTM i7-7820X Processor (8 cores, 11M Cache, up to 4.30 GHz)

• Write out data to HDD, NVMe SSD, DRAM

• Compare compression algorithms: LZ4, ZLIB, LZMA, no compression

• GCC 8.1.0, C++17, -O3 -march=native (skylake-avx512), release build 9

58

Test creates 10 branches, each with a vector of 10 Event

Multi Branch Benchmark: Speedup

59All figures using ROOT master branch

RDataFrame Basics

Can we do Better?

61

simple yet powerful way to analyse data with modern C++

provide high-level features, e.g.
less typing, better expressivity, abstraction of complex operations

allow transparent optimisations, e.g.
multi-thread parallelisation and caching

Improved Interfaces

62

TTreeReader reader(data);
TTreeReaderValue<A> x(reader,"x");
TTreeReaderValue y(reader,"y");
TTreeReaderValue<C> z(reader,"z");
while (reader.Next()) {
 if (IsGoodEntry(*x, *y, *z))
 h->Fill(*x);
}

what we
write what we

mean

● full control over the event loop
● requires some boilerplate
● users implement common tasks again and again
● parallelisation is not trivial

RDataFrame: declarative analyses

63

● full control over the analysis
● no boilerplate
● common tasks are already implemented
 ? parallelization is not trivial?

RDataFrame d(data);

auto h = d.Filter(IsGoodEntry, {"x","y","z"})

 .Histo1D("x");

RDataFrame: declarative analyses

64

● full control over the analysis
● no boilerplate
● common tasks are already implemented
 ? parallelization is not trivial?

ROOT::EnableImplicitMT();

RDataFrame d(data);

auto h = d.Filter(IsGoodEntry, {"x","y","z"})

 .Histo1D("x");

Columnar Representation

pt_x pt_y pt_z theta

entries
or events
or rows

→

columns
or “branches”←

65

can contain any kind
of c++ object

RDataFrame: quick how-to

66

1. build a data-frame object by specifying your data-set

2. apply a series of transformations to your data

○ filter (e.g. apply some cuts) or

○ define new columns

3. apply actions to the transformed data to produce results

(e.g. fill a histogram)

Creating a RDataFrame - 1 file

67

RDataFrame d1("treename", "file.root");

auto filePtr = TFile::Open("file.root");

RDataFrame d2("treename", filePtr);

TTree *treePtr = nullptr;

filePtr->GetObject("treename", treePtr);

RDataFrame d3(*treePtr); // by reference!

Three ways to create a RDataFrame that reads tree
“treename” from file “file.root”

Creating a RDataFrame - more files

68

RDataFrame d1("treename", "file*.root");

RDataFrame d2("treename", {"file1.root","file2.root"});

std::vector<std::string> files = {"file1.root","file2.root"};

RDataFrame d3("treename", files);

TChain chain("treename");

chain.Add("file1.root); chain.Add("file2.root);

RDataFrame d4(chain); // passed by reference, not pointer!

Here RDataFrame reads tree “treename” from files
“file1.root” and “file2.root”

Cut on theta, fill histogram with pt

69

RDataFrame d("t", "f.root");

auto h = d.Filter("theta > 0").Histo1D("pt");

h->Draw(); // event loop is run here, when you access a result
 // for the first time

event-loop is run lazily, upon first access to the results

70

Think of your analysis as data-flow

auto h2 = d.Filter("theta > 0").Histo1D("pt");

auto h1 = d.Histo1D("pt");

data filter histo
pt

histo
pt

Using callables instead of strings

71

// define a c++11 lambda - an inline function - that checks “x>0”

auto IsPos = [](double x) { return x > 0.; };
// pass it to the filter together with a list of branch names

auto h = d.Filter(IsPos, {"theta"}).Histo1D("pt");

h->Draw();

any callable (function, lambda, functor class) can be
used as a filter, as long as it returns a boolean

Filling multiple histograms

72

auto h1 = d.Filter("theta > 0").Histo1D("pt");

auto h2 = d.Filter("theta < 0").Histo1D("pt");

h1->Draw(); // event loop is run once here

h2->Draw("SAME"); // no need to run loop again here

Book all your actions upfront. The first time a result is
accessed, RDataFrame will fill all booked results.

73

Define a new column

double m = d.Filter("x > y")

 .Define("z", "sqrt(x*x + y*y)")

 .Mean("z");

`Define` takes the name of the new column and its
expression. Later you can use the new column as if it

was present in your data.

74

Define a new column

double SqrtSumSq(double, double) { return … ; }

double m = d.Filter("x > y")

 .Define("z", SqrtSumSq, {"x","y"})

 .Mean("z");

Just like `Filter`, `Define` accepts any callable object
(function, lambda, functor class…)

75

Think of your analysis as data-flow
// d2 is a new data-frame, a transformed version of d

auto d2 = d.Filter("x > 0")

 .Define("z", "x*x + y*y");

// make multiple histograms out of it

auto hz = d2.Histo1D("z");

auto hxy = d2.Histo2D("x","y");

You can store transformed data-frames in variables,
then use them as you would use a RDataFrame.

data

filter
x > 0

histo
x,y

histo
z

define
z

d

d2

76

d.Filter("x > 0", "xcut")

 .Filter("y < 2", "ycut");

d.Report();

Cutflow reports

// output
xcut : pass=49 all=100 -- 49.000 %
ycut : pass=22 all=49 -- 44.898 %

When called on the main TDF object, `Report` prints
statistics for all filters with a name

77

// stop after 100 entries have been processed

auto hz = d.Range(100).Histo1D("x");

// skip the first 10 entries, then process one every two until the end

auto hz = d.Range(10, 0, 2).Histo1D("x");

Running on a range of entries #1

Ranges are only available in single-thread executions.
They are useful for quick initial data explorations.

78

// ranges can be concatenated with other transformations

auto c = d.Filter("x > 0")

 .Range(100)

 .Count();

Running on a range of entries #2

This `Range` will process the first 100 entries
that pass the filter

79

auto new_df = df.Filter("x > 0")

 .Define("z", "sqrt(x*x + y*y)")

 .Snapshot("tree", "newfile.root");

Saving data to file

We filter the data, add a new column, and then save
everything to file. No boilerplate code at all.

80

RDataFrame d(100);

auto new_d = d.Define("x", []() { return double(rand()) / RAND_MAX; })

 .Define("y", []() { return rand() % 10; })

 .Snapshot("tree", "newfile.root");

Creating a new data-set

We create a special TDF with 100 (empty) entries,
define some columns, save it to file

N.B. `rand()` is generally not a good way to produce uniformly
distributed random numbers

https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

81

Not Only ROOT Datasets

• TDataSource: Plug any columnar format in RDataFrame
• Keep the programming model identical!
• ROOT provides CSV data source
• More to come

– TDataSource is a programmable interface!
– E.g. https://github.com/bluehood/mdfds LHCb raw

format - not in the ROOT repo

https://github.com/bluehood/mdfds

82

Not Only ROOT Datasets

tdf014_CsvDataSource_MuRun2010B.csv:
Run,Event,Type1,E1,px1,py1,pz1,pt1,eta1,phi1,Q1,Type2,E2,px2,py2,pz2,pt2,eta2,phi2,Q2,M
146436,90830792,G,19.1712,3.81713,9.04323,-16.4673,9.81583,-1.28942,1.17139,1,T,5.43984,-0.362592,2.62699,-
4.74849,2.65189,-1.34587,1.70796,1,2.73205
146436,90862225,G,12.9435,5.12579,-3.98369,-11.1973,6.4918,-1.31335,-0.660674,-1,G,11.8636,4.78984,-6.26222,
-8.86434,7.88403,-0.966622,-0.917841,1,3.10256
...

auto fileName = "tdf014_CsvDataSource_MuRun2010B.csv";
auto tdf = ROOT::Experimental::TDF::MakeCsvDataFrame(fileName);

auto filteredEvents =
tdf.Filter("Q1 * Q2 == -1")
.Define("m", "sqrt(pow(E1 + E2, 2) - (pow(px1 + px2, 2) + pow(py1 + py2, 2) + pow(pz1 + pz2, 2)))");

auto invMass =
filteredEvents.Histo1D({"invMass", "CMS Opendata: #mu#mu mass;mass [GeV];Events", 512, 2, 110}, "m");

RDataFrame
Extra features

84

RDataFrame d("mytree", "myFile.root");

auto cached_d = d.Cache();

Caching

All the content of the TDF is now in (contiguous) memory.
Analysis as fast as it can be (vectorisation possible too).

N.B. It is always possible to selectively cache columns to save some
memory!

85

ROOT::EnableImplicitMT();

RDataFrame d(100);

auto new_d = d.Define("x", []() { return double(rand()) / RAND_MAX; })

 .Define("y", []() { return rand() % 10; })

 .Snapshot("tree", "newfile.root");

Creating a new data-set - parallel

We create a special TDF with 100 (empty) entries,
define some columns, save it to file -- in parallel

N.B. `rand()` is generally not a good way to produce uniformly
distributed random numbers

https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

86

auto h = d.Histo1D("x","w");

More on histograms #1

TDF can produce weighted TH1D, TH2D and TH3D.
Just pass the extra column name.

87

More on histograms #2

auto h = d.Histo1D({"h","h",10,0.,1.},"x", "w");

You can specify a model histogram with a set axis
range, a name and a title (optional for TH1D,

mandatory for TH2D and TH3D)

88

auto h = d.Histo1D("pt_array", "x_array");

Filling histograms with arrays

If `pt_array` and `x_array` are an array or an STL
container (e.g. std::vector), TDF fills histograms with

all of their elements. `pt_array` and `x_array` are
required to have equal size for each event.

89

C++ / JIT / PyROOT

d.Filter([](double t) { return t > 0.; }, {"th”})

 .Snapshot<vector<float>>("t","f.root",{"pt_x"});

d.Filter("th > 0").Snapshot("t","f.root","pt*");
C++ and JIT-ing with CLING

Pure C++

pyROOT -- just leave out the ;
d.Filter("th > 0").Snapshot("t","f.root","pt*")

