ProtoDUNE-SP CFD Update

Gregory Michna Stephen Gent Cecilia Streff Jenna Harrison

Department of Mechanical Engineering South Dakota State University April 2, 2020

ProtoDUNE Modeling

Overview of Current Work: "Fine tuning" existing CFD model input parameters to better represent actual detector operation

Model Inputs

Surface temperature:	87.593 K
Liquid argon inlet temp:	87.793 K = Surface + 0.2 K
Liquid argon height:	7.50 m
Liquid argon flow rate:	0.415 kg/s per pipe

ProtoDUNE Model Updates

- Update model inputs to match new experimental operating conditions
 - Shorter LAr height (7.5m -> 7.401m)
 - Include **pipe probe** temperature sensors
 (Qty 8, height = 39cm, Qty 4, height = 30cm)

3

ProtoDUNE Model Updates

- Update model with new features
 - Electronics Heat Source- 2 regions along +y APA
 - 366W on each
- Investigate other sources of discrepancy
 - Other heat sources
 - Iteration-to-iteration

Distributed Inlet Temperature & Flow Rate

- Inputs based on "Inlet Pipe Network" Simulation by Erik Voirin
 - Given Flow %: distributed total inlet mass flow rate (1.66801 kg/s)
 - Distributed inlet temperatures based on given (weighted avg. based on mass flow rate = existing model inlet temp = 87.793K)

	From Ve	oirin	Model Inputs		
Inlet	Flow %	Temp (K)	Temp (K) Flow Rate (kg/s)		
1	25.20%	88.327	0.42034	87.794	
2	28.50%	88.333	0.47538	87.800	
3	25.40%	88.326	0.42367	87.793	
4	20.90%	88.316	0.34861	87.783	
Weighted Average (K)		88.3255	-	87.793	

Distributed Inlet Temperature & Flow Rate

Pipe Probe Results

Quasi-Steady State Solution Effects

- CFD models are calculated out to a "converged solution"- where the calculated simulation is relatively constant (satisfying the governing equations and boundary conditions)
- Even at convergence, slight variations occur between subsequent calculations -> "quasi" steady-state

Iteration-to-iteration variation studied in previous "distributed inlet" simulation

 Model Inputs: LAr Height = 7.401m, With Electronics, Inlet flow Rates and Temperatures Weighted

Hawaii temperature profiles at multiple simulation points (iterations)

Quasi-Steady State Solution Effects- Case Study

 Compare Profiles for 2 "Quasi-Steady State" points (99,960 and 100,000 iterations)

Quasi-Steady State Solution Effects- Case Study

- **Conclusion**: Improve Error by selectively choosing simulation stopping point?
 - Edit stopping criteria (iterations > 90,000 AND other criteria satisfied)
 - Anticipate important figures/ data, set up export at iterations "x", "y" and "z" for while simulation is running
 - Can't "go back" to previous iterations

Simulation Set up		Temperature Correction (mK)		MSE*10^6		Max Temperature Error (mK)	
LAr Height	# Iterations	Static	Dynamic	Static	Dynamic	Static	Dynamic
7.5m, Constant Inlets	100,000	63.14	63.79	6.57	12.69	14.15	12.45
7.401m, Electronics, Distributed Inlets	100,000	55.85	59.19	7.61	12.24	15.58	11.90
7.401m, Electronics, Distributed Inlets	99,960	55.73	58.17	4.96	4.72	12.44	10.52

ProtoDUNE Modeling – Possible Future Work

- Heat transfer from inlet pipes
 - Qty 4 Pipes (Length =6.472m, OD = 42.4mm) deliver "warm" LAr to Cryostat
- Other significant heat sources or flow obstructions within cryostat?

Big Picture: What level of agreement is required? How can we prioritize to bring more value?

