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Introduction

• Liquid Argon Time Projection Chambers (LArTPCs) are currently a very 
important detector technology for neutrino physics. 
• At FNAL: MicroBooNE, Icarus, SBND. 
• Future: DUNE (70kT LArTPC deep underground, plus near detector).
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• Charged particles ionize liquid 
argon as they travel. 

• Ionisation electrons drift due to 
HV electrode field, and are 
collected by anode wires. 

• Wire spacing ~3mm – produce 
high-resolution images.
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CNNs in neutrino physics
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• Convolutional neural networks show 
great promise in image classification 
over the past decade. 

• Most neutrino detector technologies 
naturally provide pixel maps which can 
be classified using CNNs. 

• Examples: NOvA, MicroBooNE, DUNE.

• Issues with this approach: 
• Dense representation of sparse data. 
• Operate over mostly empty space! 
• Need to transform 3D representation into 

voxels. 
• GNNs can work with reconstructed 

spacepoints natively.

arXiv:1604.01444
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Why graph networks?

• Convolutional neural networks are a heavily used computational technique. 
• But they assume your data is assembled in a grid structure! 

• For a 2D TPC readout, this is a good assumption (wire vs time). 
• For 3D spacepoints reconstructed from hits, this is less true. 
• For other data structures, this may not be true at all. 

• Investigate techniques that are able to meet our data on its own terms. 
• The fact that graph networks can be applied to heterogeneous data 

structures offers the potential to run at multiple information scales. 
• Operate on spacepoints, then on clusters, then on the event as a whole.
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Applications in DUNE

• Use 3D WireCell spacepoints as input to network. 
• Train network to group 3D spacepoints into clusters for downstream processing. 
• Toy study: use Pandora 3D spacepoints from ProtoDUNE MC as input. 
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Graph construction

• Detector geometry in IceCube and CMS provide initial constraints: 
• Quantised DOM structure in IceCube limits number of graph nodes. 
• Layer structure in CMS provides natural constraint on edges (limited to 

adjacent detector layers). 
• By contrast: ProtoDUNE MC readout window has ~50k Pandora spacepoints. 

• Some creativity required to construct a sensibly defined graph structure. 
• First pass: construct cluster-wise graphs from Pandora PFParticles. 

• Construct graph from reconstructed spacepoints in local area, and design a 
graph network to classify spacepoints. 

• Filter out oversize events (>10k spacepoints), limit number of edges per node. 
• Start with publicly available HEP.TrkX network and iteratively adapt to achieve 

optimal performance in a TPC.
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Message-passing architecture

• Edge classifier: 
• Input for each node is the features of incoming and 

outgoing nodes. 
• Two multi-layer perceptrons, using Tanh and sigmoid 

activations. 
• Outputs sigmoid score on each edge. 

• Node classifier: 
• Uses edge score to aggregate each node’s features with 

incoming & outgoing edges as input. 
• Two multi-layer perceptrons with Tanh activation. 
• Produces new features for each node.
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Training parameters 

Objective: Binary cross-entropy 
Optimiser: Adam 

Learning rate: 0.001 
7 model iterations 

Batch size: 3 

Model parameters: 26433 

Memory usage: ~16GB

arxiv:1810.06111
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Network performance

• Some small evidence of 
learning over the first few 
epochs, but clearly much 
room for improvement! 

• Succeeded in initial goal: 
constructing workflow to 
produce graphs and train 
networks in TPCs
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• Next steps: 
• Try with a simpler problem (atmospheric interactions in DUNE 10kt FD). 

• Cluster entire readout simultaneously. 
• Train on WireCell spacepoints. 

• Less dense point clouds may prevent the need to train on cluster-wise graphs. 
• Explore entirely different graph constructions. 

• Cluster-wise graphs for particle ID?
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Simulation

• Simulation is atmospheric neutrino interactions in the full 10kt geometry. 
• Produced three 600k MC training samples. 

• νe,μ,τ (each flux-swapped from initial νe & νμ flux). 
• Flatten Honda flux below few-GeV to avoid MC being completely overwhelmed 

by very low-energy interactions.
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s• Standard simulation chain, run 

reconstruction up to 3D 
spacepoint finding 
(SpacePointSolver). 

• Since the principal objective of 
this study was clustering, 
focused on νμ interactions.

True ν energy spectrum
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Graph inputs

• Spacepoint graph looks something like this:
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Input production

• Graphs are produced from reconstructed spacepoints. 
• The initial goal of this study was to cluster spacepoints from WireCell. 
• Produced graphs using both Pandora and SpacePointSolver. 

• These studies will show the latter, since they are the most direct analogue to 
WireCell spacepoints. 

• Construct a graph node for each spacepoint. 
• Node features include charge of associated hits, xyz position, number of 

nearest neighbours, and the G4 track ID of the MC particle that 
contributed the most charge. 
• G4 ID is obviously not used during training, but is used to construct the 

ground truth during preprocessing. 
• Edge label is 1 if nodes share the same G4 ID, 0 if not. 
• A more complex ground truth definition may be necessary (see later).
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Training

• Training objective is binary cross-entropy loss on edge labels. 
• When training over four GPUs simultaneously, training one epoch of ~200k graphs 

takes around seven minutes. 
• Batch size of 100 distributed across those four GPUs. 
• Network trains very quickly, and then plateaus at a loss of around 0.5.
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Training parameters

Learning 
rate 0.0005

Optimiser Adam

Message 
passing 

iterations
6
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Performance

• Initial loss reduction was encouraging, but in this case, misleading. 
• The majority of edges in the graph are false, and so the network 

can achieve high accuracy by simply classifying all edges as false. 
• We can prevent it from doing this by weighting the loss function 

during training. 
• Weight true edges up, and false edges down, to encourage the 

network to pay more attention to true edges. 
• This is a balancing act! Weight too heavily, and the network will 

learn the opposite lesson, ie. classify all edges as true. 
• Finding the right weights to get the network to sit in a middle 

ground.
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Further tests

• Weighted true edges up and false edges down. 
• Monitored efficiency for true and false edges 

independently. 
• Network started to learn, but plenty of tradeoff 

in efficiency labelling true and false edges.
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Total accuracy Correctly identified 
false edges

Correctly identified 
true edges

True weight: 1.5 
False weight: 0.7 

True weight: 1.5 
False weight: 0.6
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Graph analysis

• Look closer at graph definition:
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True edges 
False edges
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Graph analysis

• Not clear that a naïve definition of ground truth (matching true G4 ID 
between spacepoints) was good enough. 

• From closer analysis, 20-40% of nodes in a typical graph have no 
true edge attached. 

• Suspected G4 IDs from small particles are confusing things here. 
• Two important lessons from this first pass: 

• Don’t try to do too much at once. 
• Thinking carefully about how to define ground truth is critical. 

• Using Exa.TrkX networks as a starting point was also very instructive 
in understanding the ways in which the needs of a LArTPC differ.

�16



J. Hewes – Exa.TrkX All Hands – 7th April 2020

Spacepoint deghosting

• Definition of ground truth: 
• Require that all associated 2D hits derive the 

majority of their energy from the same true 
particle. 
• For “true” spacepoints, this also 

provides a true particle association. 
• Calculate the point of closest approach 

between the reconstructed spacepoint and 
the true particle trajectory. 

• Sort spacepoints in ascending distance 
order, and mark spacepoints as true 
provided hits are not reused.
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• Took a different approach to developing graph networks: deghosting 3D 
spacepoints. 

• Take a high-efficiency but low-purity spacepoint reconstruction, and improve the 
purity by rejecting “false” spacepoints. 

•
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PointNet++ network

• One graph network that may be effective when applied to this problem is called 
PointNet++ (arxiv:1706.02413). 
• This network is specifically designed to operate on point clouds. 
• Utilises set abstraction to aggregate local features, similar to a U-net for CNNs.
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Training results

• PointNet++ is not able to run effectively in pytorch-geometric yet. 
• Convolutions are fast, but the utilities for performing upsampling and 

downsampling are not optimised for large graphs. 
• This makes PointNet++ prohibitively slow to run (for now). 

• In the interim, attempted training with a message-passing network similar 
to ones I’ve used in the past, but with a node classification output.
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• Node classification network doesn’t 
perform well out of the box. 

• I was somewhat expecting this, since 
the problem of drawing edges in a 
dense point cloud means the graph is 
not fully connected 

• I also suspect the ground truth 
definition is again also to blame.



Current and future plans
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New training samples

• Previously working with a training sample of high-energy neutrino 
interactions in the DUNE far detector. 
• Made this decision because these types of interaction are the ones 

we’re most interested in from a physics perspective. 
• As event displays on previous slides have shown, these events 

tend to be large, messy interactions with many overlapping 
particles.
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SHOWER DAUGHTERS 
Any particle produced by: 

Pair production 
Compton scattering 

Bremsstrahlung 
Photoelectric effect 

Annihilation 

• Default GEANT4 behaviour in LAr 
simulation is to discard any simulated 
particles associated with EM processes. 

• Causes many issues with defining a 
ground truth when information is missing.
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New training samples

• Produced samples of CCQE neutrino interactions in the DUNE far detector. 
• Sample of clean, low-occupancy events to use for testing different techniques. 
• Keep all “shower daughters” in order to have access to all information when 

defining ground truth.
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Simulated νe CCQE interaction

Colour-coded by true primary
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Fuzzy ground truth

• I suspect a lot of the problems with training thus far have been a result of using 
binary classification for the ground truth. 

• We use multiple factors to decide whether an edge should be considered true 
or false, and then give the network the difficult task of trying to reverse-engineer 
that logic. 

• Solution: stop using binary cross-entropy loss, which expects a binary ground 
truth (0 or 1), and instead use a categorical cross-entropy that allows the 
truth to be a probability between 0 and 1. 

• We can directly give the network the parameter we care about (in this 
case, point of closest approach between spacepoint and true particle 
trajectory) and perform decision-making on the output. 
• Rather than arbitrarily cutting on distance to define a binary ground truth, 

train a network with a smoothly varying truth and then cut on the model’s 
output.
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Spacepoint deghosting

• Raw deghosting truth for 
spacepoints is distance $  
between reconstructed 
point and true trajectory. 

• Apply exponential decay to 
produce ground truth 
$ , where $  is a 
configurable characteristic 
length (1cm in this 
example). 

• Use categorical cross-
entropy loss with floating 
point truth.

d

y = e− d
l l
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Spacepoint segmentation

• Promising early results using sparse segmentation (CNN-based approach) 
for particle ID in ProtoDUNE. 
• Based on Kazu et al’s paper (arxiv:1903.05663).

�25

C. Sarasty – ProtoDUNE indico

• Segment voxels by particle type: 
• μ, π, κ, HIP, shower, Michel e, etc. 

• Take existing work on ground truth, 
developed in context of ProtoDUNE, and 
apply to DUNE far detector. 

• Instead of voxelising spacepoints and 
utilising a CNN, define ground truth per 
individual spacepoints. 

• Test GNN ability to segment different 
particle types.

https://indico.fnal.gov/event/23918/contribution/3/material/slides/0.pdf
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Hierarchical particle clustering

• Longer-term goal is to build towards a hierarchical cluster-based 
technique. 

• Instead of edge classification between individual spacepoints, perform 
graph edge classification between spacepoints and higher-level objects 
(true particle, true primary, interaction system).

�26

True particle True primary Interaction system
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2D hit matching

• Working natively in 3D relies upon a reliable method for reconstructing 2D hits into 3D. 
• Instead of relying on 3D spacepoint reconstruction, consider starting with 2D hits on 

three wire planes, and form connections between those. 
• With a graph structure, is it possible to form objects without reconstructing individual 

3D spacepoints? 
• Unlike point cloud, hit time and wire plane naturally reduce number of potential edges.
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Summary

• Investigating development of bottom-up techniques for graph 
network reconstruction in LArTPCs. 

• Initial efforts inspired by HEP.TrkX did not bear much fruit. 
• Conclusions: simpler topologies, more point-cloud-based 

techniques. 
• Current & future steps: 

• Spacepoint deghosting. 
• Node segmentation. 
• Hierarchical graph reconstruction. 
• Hit-matching in 2D representations.
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