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ML for LArTPCs | SLAC Group SLAC S
At SLAC, research supported by DoE ECA grant (K. Terao):

o Deep-learning-based data reconstruction chain for liquid
argon time-projection chambers
e uBOONE, pDUNE, ICARUS, ArgonCube 2x2, DUNE

@ Disclaimer: no physics results in this talk

Group consists of three scientists, three postdocs, three grad students

T. Usher ‘ « F. Drielsma Q. Lin L. Domine
ICARUS )/ ICARUS ICARUS ICARUS
P. Tsang R. ltay D.H. Koh P. Cotes
pDUNE pBOONE ICARUS de Soux

T M\ Reconstruction Chain for LATPC: I
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Liquid Argon TPC

ionizing particle trajectories

@ mme-scale spatial res.

@ MeV-scale energy res.

Charged Particles
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Run 3493 Event 41075, October 23*¢, 2015
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Liquid Argon TPCs \ Single 2D projection pcceLeraTor

Very distinct topologies

Run 3493 Event 41075, October 23*%, 2015
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Liquid Argon TPCs \ Single 2D projection GRS [cciemios

Conversion gap resolved

P

Run 3493 Event 41075, October 237%, 2015
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Neutrino Imaging Detectors Whole-image analysis S AL st

@ Interaction class (v./v,, CC/NC)
@ Neutrino energy
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Neutrino Imaging Detectors Whole-image analysis S AL st
Technically the simplest approach, if it works...

Problems expected in high-res LArTPCs
@ Complex topologies, huge phase space
e What if things fail 7 Why ?

@ Interaction class (v./v,, CC/NC)
@ Neutrino energy
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Neutrino Imaging Detectors Whole-image analysis S AL st

Problems expected in high-res LArTPCs
@ Complex topologies, huge phase space
e What if things fail 7 Why ?

Could we enforce physics principles:
@ Key features like vertex
e dE/dx, particle ID

@ Interaction class (v./v,, CC/NC)
@ Neutrino energy

Francois Drielsma (SLAC) ML Reconstruction Chain for LArTPCs April 7, 2020

Technically the simplest approach, if it works...

5/25



Neutrino Imaging Detectors Whole-image analysis S AL st
Technically the simplest approach, if it works...

Problems expected in high-res LArTPCs
@ Complex topologies, huge phase space
e What if things fail 7 Why ?

Could we enforce physics principles:
@ Key features like vertex
e dE/dx, particle ID

— Yes ! That’s our research !

_ What are the optimal network architectures for

o Interaction class (v./v,, CC/NC) our data to maximize the physics output ?

o Neutrino energy
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Enforce extraction of hierarchical physics features

ML Reconstruction Chain for LATPCs IR



Hierarchical feature extraction | Big Picture Si AL o

Enforce extraction of hierarchical physics features

1. Pixel feature extraction + key points (particle start/end)
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Hierarchical feature extraction | Big Picture Si AL o

Enforce extraction of hierarchical physics features
1. Pixel feature extraction + key points (particle start/end)
2. Vertex finding 4 particle clustering
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Hierarchical feature extraction | Big Picture Si AL o

Enforce extraction of hierarchical physics features
1. Pixel feature extraction + key points (particle start/end)
2. Vertex finding 4 particle clustering
3. Particle type + energy/momentum
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Hierarchical feature extraction \ Big Picture SLALG kit

Enforce extraction of hierarchical physics features
1. Pixel feature extraction + key points (particle start/end)
2. Vertex finding 4 particle clustering
3. Particle type + energy/momentum

4. Interaction (particle flow) reconstruction
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Hierarchical feature extraction \ Big Picture SLAL ot

Enforce extraction of hierarchical physics features
1. Pixel feature extraction + key points (particle start/end)
2. Vertex finding 4 particle clustering
3. Particle type + energy/momentum

Make it for 2D/3D data +
whole chain trainable

4. Interaction (particle flow) reconstruction

Francois Drielsma (SLAC) ML Reconstruction Chain for LArTPCs April 7, 2020 6 /25



Pixel feature extraction

‘ Architecture
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UNet + Residual connections + Sparse convolution — ‘ Sparse UResNet‘

Encoder

Number of strided
convolutions, convolution
layers, residual connections,
differ in impementations
arXiv:1903.05663

Decoder

ML Reconstruction Chain for LArTPCs

input

tconv-s2-fde

softmax

Residual
connections

-=» Concatenation

L. Domine G



https://arxiv.org/abs/1903.05663
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ICARUS, arXiv:1210.5089 LArPix, arXiv:1808.02969
" Francois Drielsma (SLAC) | ML Reconstruction Chain for LAFTPCs [ AT 7,2020 8 /25


https://arxiv.org/abs/1210.5089
https://arxiv.org/pdf/1808.02969.pdf

Pixel feature extraction | Space points SLALG kit

Image
Algorithms to go from to 2D to 3D:
5 ~, .3 o BNL's WireCell
.'.0" M AN

@ T. Usher's Cluster3D

Cluster3D designed for high efficiency, relies on
-~ R downstream space point solver
¢ Ay, <

@ Traditional likelihood-based

e Semantic segmentation to
discriminate against “ghost” points

Cluster3D < ICARUS simulation on 2.3%> m? region

SpacePomts . 250 %x T. Usher, P. Tsang, L. Domine e e

Francois Drielsma (SLAC) ML Reconstruction Chain for LArTPCs April 7, 2020 9 /25
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“Ghost" points

Cluster3D k. ; removed by
SpacePoints . network

Francois Drielsma (SLAC) ML Reconstruction Chain for LArTPCs April 7, 2020 10 / 25



Pixel feature extraction \ Deghosting SLAL it

True (Iabel “Ghost” points § -
“ghost” points agc removed by P

removed R network

ML Reconstruction Chain for LATPC: I



Pixel feature extraction

‘ Particle type
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Voxelized energy >

Particle type
)
deposition

predicted by the
o
Sq; X
~ Francois Drielsma (SLAC)

i . .
oo

network
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UNet

Particle type identification accuracy:

Particle type | Voxel fraction | Accuracy "
HIP 17% 98.2% o
MIP 34% 99.4% =

Showers 47 % 99.2% L

Delta rays 1% 96 % =
Michel 1% 94.7 % “’u
Total 99 % ﬂo

Particle type

Network adapted to very sparse data, predicted by the

see paper for details: arXiv:1903.05663
network

ST L Reconstruction Chain for LATPC: I
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Pixel feature extraction Point proposal SLAL it

Semantic
Segmentation

Point

I I I Prediction input
Pz (SO
----------------- - convs2inc
I l I :
! ; tconv-s2-fde
I ...... T
Number of strided !
convolutions, convolution !

_. ! Mask1 softmax
layers, residual connections, (mask-out pixels Residual
differinimpementations T AT where score for connections

prediction is low) = =» Concatenation
doi.org/10.5281 /zenodo.1300713
L. Domine

S ML Reconstruction Chain for LAFTPCs
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Pixel feature extraction

‘ Point proposal
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Types
Image Points |
Pixel Data UNet

A0

Region proposal at > N
lowest resolution

Region proposal at
#[b .
< ) X
~ Francois Drielsma (SLAC)

<0
intermediate resolution

ML Reconstruction Chain for LAFTPCs - April7,2020 13/25



- - - I ‘ NATIONAL
Pixel feature extraction \ Point proposal SLAL it
Types
,
mage t:

Point proposal efficiency (97 % < 10 px):

- - -
g g g

Number of the ground truth points

-
)

8

2 4 6
Distance to the closest prediction [pixels]

Point proposal at "“0
doi.org/10.5281 /zenodo.1300713 original resolution o

T L Reconstruction Chain for LATPC: I
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S ML Reconstruction Chain for LAFTPCs
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Encoder Embedding Decoder mbeddings . .
B . e Network predicts 3 things:
— e - I e Embedding: space in
I ! g sp
= I. -------------------- & I - . which fragments are
| o | I. ____________ I A spatially separated

" e Seediness: likelihood
|7_> I 7 .« that a voxel is a
cluster centroid in
embedding space

ResNet Block Definition Seediness Decoder Seediness

Res 33 e Margin: Size of the
= cluster in embedding
[ressss space
SubConv 3x3

;I i e D. H. Koh @
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‘ Fragment clustering G/l it

Image

Points

790 700
o o0
0 AN
200 500
zo® Z i
20 AN
AP O
Q&QQ " 90]000 .Q 5 . 90]000
Particle instance W Particle instance T
labels o predictions %

ML Reconstruction Chain for LArTPCs



Pixel feature extraction \ Fragment clustering  SLAL o

Image Points |

Instance clustering accuracy (ARI):

Distribution Plots for Particle Clustering

Z 10 ? 70
< s
% 08 o ni N
[9) 0 R
2 os * S Tk
= s BN
é .4 z 50 <
- 02 2°
& @
3 0.0 Q 0
2 02 o 20700
L »
" Sroner e ek Particle instance %,
Semantic Type predictions 5.
In X
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CNN struggles with far detached elements such as shower secondaries.
Graphical Neural Networks (GNN) are ideal for this:

@ Based on nodes and edges. Features propagate by message passing (MP)

\
/
Define a graph with node Graph Convolution + Updated node and
& edge level features. Message passing edge features

F. Drielsma, Q. Lin, P. Cotes de Soux e @ ®

S ML Reconstruction Chain for LAFTPCs
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Shower clustering Network input

[
<
From previous stages:

o Fragmented EM showers /

4 JiaeaEn

| -
- ¢ Fragments in

, = Euclidean space

ST ML Reconstruction Chain for LATPC: I
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Shower clustering Network input

From previous stages:

o Fragmented EM showers

o
T
Node features:
@ Geometrical features G r——
@ CNN autoencoder
o Aggregated embedding of voxels
)5\ ¥

v ?
-

1 ‘ ‘
o ¢ x-component of

= fragment PCA
~ Francois Drielsma (SLAC) ML Reconstruction Chain for LAFTPCs - Aprl7,2020 17 /25



Shower clustering Network input SLAL it

From previous stages:

o Fragmented EM showers
Node features:

@ Geometrical features

@ CNN autoencoder

o Aggregated embedding of voxels
Input graph:

@ Connect every node with every other
node (complete graph)

~ Complete graph
, on the fragments
~ Francois Drielsma (SLAC) ML Reconstruction Chain for LArTPCs - Aprl7,2020 17 /25



Shower clustering Network input o1 A vow
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From previous stages:

o Fragmented EM showers
Node features:

@ Geometrical features

@ CNN autoencoder

o Aggregated embedding of voxels
Input graph:

@ Connect every node with every other
node (complete graph)

Edge features:

e Displacement vector (+variations)

Distance between

, - fragments
~ Francois Drielsma (SLAC) ML Reconstruction Chain for LAFTPCs - Aprl7,2020 17 /25

@ Points of closest approach



Shower clustering ‘ Edge classification SLAL i
At each message passing:
o Node update
o= 0w+ )i ni) %5 - heleiy)
NNConv: arXiv:1704.02901
o Edge update

e;; = po(xi j, ;)

Metalayer: arXiv:1806.01261

ST L Reconstruction Chain for LATPC: N


https://arxiv.org/pdf/1704.02901.pdf
https://arxiv.org/pdf/1806.01261.pdf
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Shower clustering ‘ Edge classification SLAL i

At each message passing:
o Node update /
o= 0w+ )i ni) %5 - heleiy)
NNConv: arXiv:1704.02901
o Edge update

e;; = Po(Ti, z;, €i;)
Metalayer: arXiv:1806.01261
After n = 3 node+edge updates: {
@ Edge binary classification

Target:

@ Predict adjacency matrix A;j = dg, 4, If
with g the true partition of the set o ¢ Group labels and

@ Apply cross-entropy loss v " true edges

ML Reconstruction Chain for LATPCs IR
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https://arxiv.org/pdf/1806.01261.pdf

S ML Reconstruction Chain for LAFTPCs

Shower clustering Inference SLAL i

The network predicts a score matrix S, esti-

mate of the true adjacency matrix A Edge scores (only
> 0.5 drawn)

@ How to recover a set partition g?

==




Shower clustering Inference SLAL
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The network predicts a score matrix S, esti-

mate of the true adjacency matrix A Edge scores (only

@ How to recover a set partition g? > 0.5 drawn)

We want the partition g that minimizes the CE
loss, given A;j = 65, 4, €.8.

g = min Lce(S,A(g))

ML Reconstruction Chain for LArTPCs



Shower clustering

Inference

The network predicts a score matrix S, esti-
mate of the true adjacency matrix A

@ How to recover a set partition g?

We want the partition g that minimizes the CE

loss, given A;j = 65, 4, €.8.

g= mmﬁoE(S A( )

geG

G is the set of all possible partitions
e Bell number, huge (Bg =~ 5 x 10'3),

cannot brute force, how to optimize?
@ Build MST on edge scores

@ Down select edges until score cannot be "~ «

improved further
~ Francois Drielsma (SLAC)

1 550

ML Reconstruction Chain for LArTPCs
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MST edges that
minimize the loss



Shower clustering Metrics SLAL it
Purity = & >0, max; |¢; N ;] g g

@ ¢; predicted cluster

@ t; true cluster with highest count in ¢;
Efficiency = & > max; |c; N ;| tl C1

@ c; pred. cluster with highest count in ¢;

@ t; true cluster

Co

T ML Reconstruction Chain for LATPC: N
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Purity = & >0, max; |¢; N ;] g g
@ ¢; predicted cluster

@ t; true cluster with highest count in ¢;

Efficiency = & > max; |c; N ;| tl
@ c; pred. cluster with highest count in ¢;

@ t; true cluster b

Adjusted Rand Index (ARI)
" " A

@ Measure of overlap of prediction and
truth, adjusted for random chance Co
RI = b

— a+tbtctd
RI-FE(RI
ARI = 1—E(§21))

S ML Reconstruction Chain for LAFTPCs
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B

Group labels and o Group perdictions
90 true edges T e and selected edges

ML Reconstruction Chain for LArTPCs




Shower clustering

’I ‘n NATIONAL
\ Performance FoHIY O

Image

Shower clustering accuracy:

1+ 58 ARI (Mean: 0.948529)
Purity (Mean: 0.986389)
[ Efficiency (Mean: 0.984076)

-
)

- o
g g

I
I
I
I
I
I
I
I

© I

N B
I
I
I
I
I
I —
I

© I

SR
I
I S —
I —
_-—

o __

o I R
I —
N S —
I S —
I N —
_I—

Metric

==

Fragments

||
0.8 1.0

1B 7
I
- / Group perdictions
o and selected edges

ML Reconstruction Chain for LArTPCs
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Shower Clustering ‘ Start identification SLAL ‘it

imes

Identifying shower starts is a very useful task

@ Start point, direction

@ Shower matching for my reconstruction

-
Given a partition g:
o Create a complete graph within each - c
pred. group (
@ Predict which node comes first in time -
within each pred. group
@ CE loss on primary labels, if only 1 true 1 .
: . ¢ Shower primary
primary in pred. group
y TS labels
_ ML Reconstruction Chain for LArTPCs
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m

Image

Pixel Data
Fragments

Shower primary accuracy (98.3 %):

msm Secondary node
108 Primary node
10*
,-/‘
// 3
/
10° (
1 N
0

|| 2. ‘ [ ;
Hi II||I|I|I|I||I.|||I.||||I||I| - ,  Shower primary
0.2 0.4

a0 predictions
Primary score i .

S ML Reconstruction Chain for LATPC: IR
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_Types
D Image

The shower clustering task can be extended to
interaction clustering:

@ Interaction group = particles that
originate from the same vertex

@ Fragment ID — Particle ID
@ Particle ID — Interaction ID

Crucial to:
@ Separate signal from background
“ o Resolve pileup (DUNE ND)

Interaction labels ~
in a 2 v-like event

T ML Reconstruction Chain for LATPC: I
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_Types
D Image

Interaction labels ~ ’ Interaction preds ~ ’
in a 2 v-like event in a 2 v-like event

ST ML Reconstruction Chain for LATPC: N



Interaction Clustering

‘ Performance

T

Image

m

Interaction clustering performance:

Metric | # of v-like | Mean Score

Efficiency

98.8 %
97.6 %
95.6 %

Purity

99.4 %
99.3 %

99.3 % 5

ARI

AN RANORAEAND R

95.6 %
93.2 %

BI h NATIONAL

—=0 ACCELERATOR
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Interactions

88.0% Interaction preds ~

ML Reconstruction Chain for LArTPCs

in a 2 v-like event
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ML Reconstruction Chain for LArTPCs:

@ Trend in neutrino detection: high-resolution particle imaging
@ Resulting analysis trend: computer vision — Machine Learning
@ LArTPC images too information rich to be reduced to simple variables in one pass

o Hierarchical feature extraction very successful so far

Areas we will work on not covered in this talk:
@ Data vs simulation domain discrepancy

@ Error propagation
Please email for more details or if you want to participate !

Francois Drielsma (SLAC) ML Reconstruction Chain for LArTPCs April 7, 2020 25 /25
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Sizes of current and future LArTPCs: Some example numbers (for ICARUS):
e uBOONE: 100t (10x2.5x2.5 m?) e Wire pitch: 3mm
e pDUNE: 200t (6x6x6 m3) Angle between planes: 60°
o ICARUS: 400t (2x(20x3x3) m?) Drift field: 500V/cm
°

(4x(0.67x0.67x2) m?)
e DUNE-ND: 150t (35x(1x1x3) m3)
o DUNE-FD: 40kt (4x(12x12x60) m3)

TPC time resolution: 0.4 us (< 1 mm)
PMT coverage: ~2%

Scintillation light: 20 % prompt (6 ns),
80 % late (1.5 us)
Photon yield: 24000/MeV

°
°
ArgonCube 2x2: 10t @ Drift velocity: ~ 0.15cm/us
°
°
°

T M\ Reconstruction Chain for LATPC: I
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ML Reconstruction Chain for LArTPCs



Sparse CNNs Introduction SLAL i

Submanifold Sparse Convolutions
1. Resources waste of dense convolutions on sparse data

2. Dilation problem

» One nonzero site leads to 3d nonzero sites after 1 convolution
» How to keep the same level of sparsity throughout the network?

https://arxiv.org/pdf/1711.10275.pdf

ML Reconstruction Chain for LArTPCs
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In more details, two new operations:
@ Sparse convolutions (SC)

» Discards contribution of non-active input sites
» OQutput site active if at least one input site is active

@ Sparse submanifold convolutions (SSC)
» Output size = Input size
» Output site active iff center of receptive field active
» Only compute features for active output sites

https://arxiv.org/pdf/1711.10275.pdf

T M\ Reconstruction Chain for LATPC:
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Point proposal | Loss SLAC L

PPN outputs voxel location, position within voxel and point class

Three components to the point proposal loss:
o Pixel classification loss at each of three depth (pixel contains point or not)

Lelass;i = Zyk log(pi) + (1 — yk) log(1 — p)

e L' distance from true point at hlghest resolution on active voxels

Laise = Zmlanz = qjl|
N3 =

@ Particle type loss at highest resolution on active voxels

N*
1 3
= W Z Z Yk,c IOg(pk,c)
3 k=1 ¢

T M\ Reconstruction Chain for LATPC: TR
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Instance Segmentation:

@ Three component loss: pull together points that belong to the same cluster, keep
distance between clusters, and regularization

L = alyar + Blgist + ’YLrega

{—> inter-cluster push force

f. = intra-cluster pull force
Luw = Z Z[max Olne—xll-6)P /e 5
var C He ! v H o ® ° Y ® eI
lo—i O f] 'Y 0.
L T e N
Lyist = C(C Z [max 0 204 — ||McA 11465”)1 o X % ------ :')l\. ' L Q
c?,cB 1 e 1\ . .~ [} C\\/ .'
AFCB A ] ] / .‘
. c ~~~~~ . o7 .z;‘ ------ -
Lreg = = 3 el _
=

arXiv:1708.02551
T ML Reconstruction Chain for LATPCs I


https://arxiv.org/pdf/1708.02551.pdf

Domain discrepancies GAN SLAL it

What can we do about imperfect simulation ?
@ Issue: the signal distribution learned by the algorithm may be different in two domains!

e Mitigation techniques in ML domain 7

» Can try CNN to locate where it is
» Can try CNN to fix the discrepancy
» Can try a training technique to minimize the effect

2 E' " ulation, feature extractors are penalized to key
el predictor G, -+4y) on simulation specific information

domain classifier G- 0;)

S o,
Y 1, e, . . ..
feature extractor Gy(367) G, ﬂ D> [IE.‘; ot « Domain-Adversarial Training of Neural Net-

= o works: J. Mach. Learn. Res. 17 (2016)
forwardprap  backprop (und produccd derivatives) a0,

T M\ Reconstruction Chain for LATPC: IR

9L, T T . . . . . .
ﬂj]ﬂ\'ﬁ'—f/ Maximize the loss to discriminate data vs. sim-




Open Source Development | Highlights SLAL e

DeepLearnPhysics: Collaboration for ML technique R&D
@ Open simulation sample (used throughout this talk)
» Open real data ? Soon ! (3D prototype R&D at SLAC)

DeepLearnPhysics @ Open source container (Singularity)

Research Collsbraton @ Open source code (GitHub)

» All the code used to make this talk is available
— Reproducible results !

» Readers have reproduced arXiv:1903.05663

T M\ Reconstruction Chain for LATPC:


http://www.deeplearnphysics.org
https://osf.io/vruzp/
https://singularity-hub.org/containers/6596
https://github.com/DeepLearnPhysics
https://arxiv.org/pdf/1903.05663.pdf
https://singularity-hub.org/containers/6596
https://osf.io/vruzp/
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