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Why do we need GNN acceleration at scale?

CMS Experiment at the LHC, CERN
Data recorded: 2016-Sep-08 08:30:28.497920 GMT
Run / Event / LS: ?80327 /56711771 / 67
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* We will need ML based reconstruction to approach the high-dimension and
finely sampled data from HL-LHC

* Most of our detectors in HL-LHC will be > 3D in readout, intrinsically difficult
for (most) humans to design traditional algorithms for them

* Even with execution speed improvements from using ML, need to handle
1000s of events per second coming from triggers
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GNNs - A summary of today’s models and uses
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* A variety of networks available closing in on the solution

* We should start now on understanding how to evaluate inference using these
models for the data volume we expect, this is no small task

£& Fermilab
3 07 April 2020 Lindsey Gray | Exa.TrkX All Hands Meeting



Current State of GNN Acceleration (that | know about...)

4

“pby hand” loading on to GPUs

print('using device %s'%device)

* Repo Minimum when only one vertex loop iteration

rts
~ /—\ Interval = latency of the first vertex loop
+ Latency:
* Summary:

i Latencyg(cycles) | Latency éabsolute) | Intérval | Pipeline | (BecomeS f|Xed 258 |atenCy and 87 |nterva|
| min | max | min | max | min | max | Type

+  With continue in the vertex loop)

i 69i 251i 0.345 us i 1.255 us i 24i 87i dataflow |
| Instance | Module | min | max | min | max | min | max | Type
igarnet_stack_uo igarnet_stack i 60i 249i 0.300 us i 1.245 us i 24i 87i dataflow i
Utilization
i Name i BRAM_IBKi DSP48Ei FF i LUT i URAMi
iTotal i 145i 1655i 82562i 99008i oi

|Available SLR 2160| 2760| 663360| 331680| 0]

+
+

|Utilization SLR (%) 6| 59| 12| 29| 100]|
|Available 4320| 5520| 1326720| 663360| (]
|Utilization (%)

3] 29| 6 14] o]

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

Y. liyama / J. Duarte

GPU acceleration available (but the GPU needs to be on the machine)

HEP.TrkX original network written for ~4 tracks on FPGA
GarNet implementation recently achieved

Initiation interval issues (time until available again), latency manageable
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Inference as a Service

External
processing
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* Lets you scale inference resources independently to match experlmenlt: neeldb
af rermia
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NVIDIA Triton Inference Server
Data Center | Cloud | Edge

Al Inference Cluster 5
CPU | GPU [(FPGA) (Javier/Burt et al.) :

requests for inference using containers

* Database of models allows on-demand requests for inference with no
requirement for loading the model on the calling device
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Requirements for using TRITON

* Model must be torch script ‘jittable’ or ONNX compatible
- pytorch’s own JIT compiler specialized for for their models
- callable from C++

* Any external library has to be packaged with the image in a very particular way

* Any external library has to already be jit-scriptable or ONNX compatible
- Makes it prohibitively difficult to use your favorite python module
- Until very recently the pytorch geometric dependencies weren’t integrated this way
- The pytorch geometric base classes are inherently not nit-compatible
- This means that right now you have to rewrite models once you figure them out (boo00)

* Working with Matthias Fey to yield jittable synthesis of models implemented in
pytorch geometric
- i.e. you go “jittable()” on your model and it writes it for you

* Still, this is very clearly the best supported method for scaling inference as a service
- and is extensible to doing inference on FPGAs as well
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Directions for FPGA Acceleration

Real time (L1) applications Coprocessor Applications

* Two major directions for optimization: real time & coprocessor
- rather different optimization requirements
* Co-processors have less strict latency and space requirements, typically
* Figuring out real-time implementations helps us bring better algorithms to L1
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Factoring problems in scaling GNNs on FPGAs (my take)

Graph Algorithms Fully Connected Network Evals
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. Instead of |mplement|ng a fully-integrated GNN, why not try using what S aIready
there

« Graph algorithms are the real missing piece, fully connected networks well studied
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The big problem(s?)

 All of these graph algorithms operate on variable inputs

- Any solution we’re going to implement in FPGAs will need to operate on fixed numbers of
points to make them compile-time static

- So for really large graphs we are stuck processing them iteratively
- This is prohibitive for real-time applications

« GarNet (from Yutaro et al.) does get around some of these issues by effectively
embedding the graph algorithms in a neural network
- Maybe there’s some mileage there to go?
- It’s sort of like a learned k-means

* There is significant possibility for busting up the problem into sectors, etc.
- This is how people are typically approaching the problem, and it makes sense
- However, you pay for sectors in post processing algorithms and space on FPGA

* There is some work already in HLS4ML towards distributing networks over

multiple FPGAS (Javier, Yutaro, Mark, Markus, et al.)
- We have to distribute the network and the graph, it’s a bit of a harder problem
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My tack on this

Start with co-processors Then scale coprocessors on trigger HW

* Seems prudent to focus on developing co-processors first to understand the
graph algorithms and how best to integrate them with existing DNN inference

* What topologies of data exchange work the best?
* Then learn how to implement co-processor style setups on trigger hardware
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and then... engineer realtime algorithms

use knowledge from scaling graphs to implement real time algorithms

« Use knowledge gained on coprocessors to yield a real-time implementation

« Likely that this occurs in tandem with co-processor development
- people already working on both anyway!
- | thought it may be useful to factor the approach a bit and focus thinking
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Conclusions and Outlook

* ML is going to be a cornerstone of next generation experiments
- Allows us to scale reconstruction and analysis algorithms to new levels of complexity

* There are technologies today that let us scale our inference capacity

- Instead of asking if we can fit a GPU on each compute node, we can just scale to the right number
of GPUs

* FPGAs offer improved power density and speed but are a bit at odds with the rather
flexible nature of GNNs
- It will take time to understand how to scale the algorithms

* A factored approach may help us in understanding the right way to apply GNNs on
FPGAs, yielding the best computing performance.

 Bringing GNNs to micro-second level evaluation times will expose powerful techniques
to HL-LHC triggering and analysis strategies
- The physics case for this stuff is pretty easy to write down
- The work needed to accelerate GNNs is at the intersection of software, hardware, and infrastructure
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