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- primordial gravitational waves
- new particles that behave like radiation in the early universe (dark radiation), Neff
- sum of neutrino masses

The CMB, and lensing of the CMB
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Credit: BICEP/Keck collaboration
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Why CMB lensing?
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- info: provides handle on large-scale structure at low redshift
- nuisance: distorts primordial CMB —> use lensing potential to ‘undo’ the lensing 

(delensing)

Credit: ESA
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Credit: Duncan 
Hanson

(no primordial B-modes)

unlensed
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(no primordial B-modes)

Credit: Duncan 
Hanson
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Next-generation experiments (eg CMB-S4) will provide higher S/N CMB map 
measurements.

To optimally extract lensing information, we need

maximum-likelihood lensing estimators

that can deal with foregrounds, systematics, ...

Measuring lensing
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Left: lensed 
polarization maps from 
the CMB.

Right: unlensed map 
(E) and lensing (𝜿).

Image-to-image 
regression!

CMB lensing 
reconstruction: 
problem 
statement
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- lots of image-based technology developed

- powerful non-linearities could be the right tool to deal with beyond-Gaussian 
information

Why neural networks?
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11200 simulated 
(Q, U, E, κ) maps, 
divided 80:10:10 
into training, 
validation and test 
sets.

Loss function: MSE

ResUNet architecture
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Results: lensing
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𝜿 maps

0 𝞵K-arcmin 1 𝞵K-arcmin 5 𝞵K-arcmin
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Power spectra of κ
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Large-scale fluctuations Small-scale fluctuations
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Previous methods fixed cross-spectrum to be equal, so to compare we rescale

and then calculate the noise spectrum:

 : true map
 : predicted
 : rescaled

Comparison with physics-based methods
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Q: The training, validation and test sets all have the same cosmology. Has the 
network just learned to reproduce that cosmology?

A: we have generated simulations with ΩCDMh2=0.1085 and 0.1285 (0.1185 on 
fiducial cosmology), and ran those through the network.

We show that we can use the predicted lensing maps to estimate ΩCDMh2 after 
correcting for bias in the noise correction.

Tests: different cosmologies
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Q: What if we give the network 
unlensed Q and U maps? Does 
the network still try to reconstruct 
lensing?

A: No, it predicts a κ consistent 
with the noise spectrum we found.

Tests: no lensing
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Inputs are now lensed (Q, U) + 
foregrounds at different frequencies (95, 
155, 220 GHz), so six maps in total. 
Same outputs.

Preliminary results are promising.

Of course, only so good as the 
foreground model is realistic… But 
that’s true of any method

Follow-ups: foreground removal
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We are entering the NISQ era
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Current quantum computers
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Quantum annealers

• non-universal

• essentially draw samples from an Ising 

Hamiltonian

• can dial couplings b, J

• D-Wave 2000Q: 2048 qubits

Gate-based

• different technologies: ion trap, 

superconducting systems, photonic 

systems…

• we’re up to ~50 qubits

• universal
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Chimera graph:

D-Wave (2000Q)
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D-Wave 2000Q has 
16x16 cells: total 
2048 qubits

Need to embed 
problem graph into 
chimera graph 
(minor embedding)
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Hidden nodes

Restricted Boltzmann Machines (RBM)
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Visible nodes

Learn the probability distribution of the 
data (which goes into the visible nodes),

For inference, evaluate likelihood using free energy

Image credit: 
Goodfellow, Bengio 
and Courville, Deep 
Learning
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RBM for classification
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Encode label on visible nodes

Image credit: Larochelle and Bengio (2008)

For the test set, try data with all labels, 
predict the smallest free energy.
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RBM for classification

27

Encode label on visible nodes

Image credit: Larochelle 
and Bengio (2008)

For the test set, try data with all labels, 
predict the smallest free energy.

Training:

Model expectations are hard to 
compute classically. Quantum 
advantage?
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Galaxy morphology: spirals vs rounded

We tested quantum RBM vs classical RBM and other classical classifiers on 
this task. Note data has to be compressed a lot! We used PCA.

Use case
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Accuracy
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Silver linings: small training set, early training
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- Unless quantum annealer is also used for inference, need the annealer to 
provide Boltzmann distribution at known temperature

- We saw distributions far from Boltzmann, so hard to use in this way. Would not 
currently recommend quantum annealer as a Boltzmann sampler

- Quantum gate models, on universal quantum computers, potentially more 
useful… (paper using Google's sycamore chip forthcoming)

Other observations
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Many deep learning applications in physics and other fields. But we need accurate 
uncertainty quantification to trust the results.

In recent years, many methods have been put forward:
- deep ensembles

- concrete dropout

- bayesian neural networks

- …

How should one choose?

How can you quantify uncertainty?
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Uncertainty in deep learning is often divided into

Epistemic and aleatoric, statistical and systematic

34

aleatoric or irreducible: uncertainty 
related to corruption of input data, 
such as detector noise

epistemic or reducible: uncertainty 
stemming from an imperfect model, 
goes down with more data
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Uncertainty in deep learning is often divided into

Epistemic is always systematic
Statistical is always aleatoric
No statistical epistemic uncertainties

Epistemic and aleatoric, statistical and systematic
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aleatoric or irreducible: uncertainty 
related to corruption of input data, 
such as detector noise

epistemic or reducible: uncertainty 
stemming from an imperfect model, 
goes down with more data
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1. Which uncertainty quantification method to choose
2. How to interpret the results

Problem summary:

36
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2. How to interpret the results

Problem summary:

Our contribution:
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Build simple sandbox with pendulum problem

From (L, T, m, θ), predict g = 4𝜋2L/T2: a problem any physics 
undergrad is familiar with

We include many measurements of T, to allow calculation of 
a statistical uncertainty
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L
m
θ
T1

…
T10

Setup
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Image credit: 
Michael Nielsen

g
σg

3 hidden layers with 100 
nodes each
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For all these methods, optimize (g, σg) to maximize Gaussian log likelihood of right 
answer, so loss is

σg provides an estimate of the aleatoric uncertainty, while the variance between 
different models' predictions gives epistemic uncertainty

Deep ensembles: different models
Concrete dropout: dropping different neurons
Bayesian NN: each weight is sampled from distribution

 

Brief introduction to the UQ methods
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Statistical (aleatoric): add noise to the T measurements (sample them from a normal 
distribution)

Systematic (aleatoric): add noise to the single L measurement

Systematic (epistemic): smaller training set, or test in different region from training 
set

How to introduce noise

40
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Results: how well is aleatoric uncertainty captured?
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Trained on data with T 
variation in range 1-5%:
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Trained on data with T 
variation in range 1-10%:

Results: how well is aleatoric uncertainty captured?
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Range 1-5%:
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Range 1-10%

Results: how well is aleatoric uncertainty captured?
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Range 1-5%
Trained on data with T variation in range 1-20%:
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Several ways to go out of distribution. We train on
g in [5, 15] m/s2.
Can test on g in [15, 20] m/s2:

Terrible results!

We can keep g same, vary L
and T out of distribution.
But that problem is too easy!

Results: out of distribution uncertainties
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- For aleatoric uncertainties, they are reasonably well-modeled: but we need to 
make sure to include a large range of uncertainties in the training set, or it won't 
see enough variation. Just like for predictions, but tricky!

- None of these methods know they go out of distribution in this simple test! 
Probably we need better methods in such a situation.

Conclusions

45
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