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Abstract 

Design of a high-efficiency collimation system with adequate shielding for personnel, 
environment and equipment in the collimation region is an essential part in 
development and modernization of accelerators. An approach for the solution of this 
class of tasks based on the integration of the MARS15 and MAD-X codes is presented. 
The system allows scalable runs on either a single host or a supercomputer in the MPI 
environment. A new collimation system for the Fermilab 8-GeV proton Booster has been 
designed using this new tool. The optimization studies have been performed on the ALCF 
THETA supercomputer. A noticeable improvement of the beam cleaning efficiency has 
been achieved in the simulations. The proposed shielding configuration and parameters 
guarantee the prompt dose levels on the berm, residual dose levels in the tunnel and 
radiation loads on the sump water will be below the administrative limits with required 
safety margins.  



 

 

Introduction 

The tools described in this paper were created and iteratively developed for solving problems where 
the primary beam plays the role of the source term and the effect of the beam halo particles lost on 
an aperture boundary is under investigation. A subject of a study can be, for example, collimation 
efficiency, radioactivation and radiation damage of equipment installed in the tunnel, ground water 
activation around the tunnel, dose on top of the berm, and skyshine.  

A challenge with simulation of such effects in circular accelerators and storage rings is that beam 
halo particles can leave the aperture after passage of many turns in a ring. Precise multi-turn beam 
tracking usually relies on the accelerator physics methods and algorithms. It would be natural to use 
these specific methods inside the machine aperture, while simulating trajectories and particle-matter 
interactions outside the aperture with well-established multi-purpose Monte-Carlo codes. Based on 
the experience over the last decade, we have found that coupling of the MARS15 code [1-3] in the 
ROOT [4] mode for particle-matter stage with the MAD-X [5] modules for tracking in the machine 
aperture provides all one needs in such applications. 

The STREG library from the MARS distribution includes the C++ tools which - among other things 
- allow creation of user-defined transport classes, called hereafter “steppers”. This feature of the 
library is described in the first section. The stepper based on the MAD-X PTC module is created. This 
stepper is a part of the MARS MADX-Beamline library. The library implements interface between MAD-
X – particle accelerator design and simulation tool - and the MARS15 code system. Features of the 
library and example of use in development of the MARS based application for the Fermilab Booster is 
presented in the second section. The Fermilab Booster, the proton synchrotron with circumference of 
474 m, is a part of the Fermilab accelerator complex. In the current design, the Booster gets protons 
with kinetic energy of 0.4 GeV from the transfer line coming from the Linac and accelerates the beam 
to 8 GeV for the Main Injector accelerator. 

There is a plan to substantially increase the beam power for the needs of the neutrino 
experiments. It turns out that the efficiency of the existing collimation system [6] is not enough to keep 
the radiation levels in and around the Booster at the current (or lower level) with the beam power 
being increased [7]. Based on the analysis of the Booster physical aperture, a proposal [8-10] called for 
a replacement of the current classical two-stage collimation system (with very thin primary collimators 
followed – at the appropriate phase advances - by a meter-long secondary collimators) with one or 
two “collimation units” made of a thick primary collimator followed practically immediately by a 
secondary collimator for the quasi-local absorption of the beam halo in the Booster realm. The last 
section describes the application of the newly-developed MARS15-MAD-X system for the optimization 
modelling of the collimation efficiency and radiation environment around the proposed “collimation 
units”. 

MARS STREG library 

The library implements interface between the MARS15 general-purpose particle transport and 
interaction code [1-3] and the ROOT Geom library [4]. Corresponding subroutines from the Geom 
library are called from the basic MARS15 geometry module. The library contains two subroutines 
mandatory for any Monte Carlo particle transport code providing the answer to the question “where 
am I” and performing a “make-a-step” action. These subroutines are named tgeo_find and tgeo_step1, 
correspondingly. These and other service functions callable from the FORTRAN code are implemented 
in C++ and have “C” binding. FORTRAN interfaces for all such functions are combined in the 



 

 

FORTRAN90 module named STREG, where the binding of the FORTRAN and C functions is described 
according to the ISO standard.  

With this approach, the number and type of arguments passed from FORTRAN code to the C 
functions checked by the compiler, i.e. errors caused by mismatch in parameters of functions can be 
detected at an early stage of the geometry model building. The usage of the ISO standard method to 
call C functions from the FORTRAN code, instead of the method specific for the GCC compiler, improves 
portability of the MARS code. Besides that, it is no longer necessary to add underscore to the name of 
C functions to make it possible to call from FORTRAN. An overhead related to the use the ISO standard 
method is that the FORTRAN statement USE STREG should be added at the beginning of the declarative 
part of a FORTRAN code, where subroutines of the STREG library are called. Namely, in the current 
MARS15 version, the use-statement needs to be added to the following user’s call-back subroutines, 
contained in m1519.f file: 

1. VFAN – volumetric procedure, calls subroutine tgeo_blvol described in the STREG module. 

2. FIELD – calculates the magnetic field components at the given point, dispatches call to function 
tgeo_field, if the ROOT geometry is active.  

3. REG1 – finds a region number for the given point in MARS non-standard, aka “user defined”, 
geometry, to perform the task it calls function tgeo_find from STREG module. The subroutine 
is also used to import or create a ROOT geometry model.  

The subroutines VFAN and FIELD, supplied with the MARS15 distribution in the m1519.f file, do 
not usually require any modification for use with the ROOT geometry model. However, content of the 
REG1 procedure may require modification in the dependence on the way the geometry model is built 
– imported from the ROOT file or created “in-situ” inside the MARS15 application. Both use cases are 
supported by the subroutines available in the STREG FORTRAN module.  

If a developer is fluent with C/C++ and ROOT, then the best way is to follow “in-situ” scenario, 
which implies that the geometry model is built by means of the ROOT tools inside the function named 
tgeo_init, called from the REG1 subroutine. This use case is implemented in the REG1 subroutine 
supplied with the MARS15 distribution in the m1519.f file. The following set of rules should be followed 
by a developer of the tgeo_init function: 

1. The function needs to be implemented in a separate file located in an application directory. 
Usually, it is called tgeo_init.cc. 

2. The file tgeo_init.cc must be added to the list referenced by a variable SRCS of the 
GNUmakefile file. 

3.  The function must have the “C” linkage, i.e. a definition of the function needs to be enclosed 
in the extern “C” block. 

4. gGeoManager object already exists when the function is called and can be immediately used 
inside the function. 

5. TGeoMedia objects used to fill the volumes are not constructed inside the function, but 
retrieved from the gGeoManager object by means of the TGeoManager::GetMedium method 
either by the number or name specified in the MARS input file (usually MATER.INP).   

For the rest, the rules of the geometry model creation are defined by the C++ and ROOT syntax 
and semantics. Based on the typical needs which came from application developments, the two 



 

 

complementary extensions were added to the library based on the hooks provided by the classes from 
the ROOT libGeom library.  

One of the extensions is aimed to provide the possibility to change the particle tracking algorithm 
used in the MARS15 code, for example, to refine the transport in magnetic field or implement transport 
in the RF cavity.   

For this purpose, the function tgeo_step1 implements a polymorphic code, which is based on calls 
to the virtual functions IsApplicable and propagate for objects belonging to a user-defined class 
derived from the GenericStepper which in turn inherits from the TGeoExtension class defined in the 
ROOT libGeom library, as shown in Figure 1. The inheritance relationship allows association between 
objects of classes derived from the GenericStepper class with the ROOT geometry objects – volumes 
and nodes. 

 

The tgeo_step1 (“make-a-step”) function checks if the custom stepper is associated with the 
current node or volume. If it is, and call to a virtual member function IsApplicable for that stepper 
returns true, then the propagate method of the stepper attached to the node/volume is used to make 
a step in a node. If the custom stepper is not detected, then default steppers provided by the library 
are used. In the presence of the magnetic field the static object of the class M15HelixStepper is used 
to make the particle step, otherwise object of the class StraightStepper is used to propagate a particle.  

For implementation of a new stepper class the following actions need to be performed: 

1. Define a class derived from the abstract class GenericStepper  

2. Implement two functions IsApplicaple and propagate 

The IsApplicaple function should return true, if the algorithm implemented in the function 
propagate is applicable for a transport of the particle identified by  PartID (see Figure 1) and having 

phase coordinates vin={x, y, z, x ,y,z , p} and time of flight toff (s); otherwise the function returns 
false. Components of the vector vin are x,y,z – the particle position in the global Cartesian application 

reference system (cm);  x ,y ,z – components of the unit vector, indicating the motion direction of 
the particle; p – the particle momentum (GeV/c).  

The function propagate should make a step s for the particle with the given charge and mass 
starting at the phase point vin and the time of flight toff. From the diagram shown in Figure 1 one can 

Figure 1: Class diagram for the STGEO base stepper classes 



 

 

see that the parameters s and toff are used for input and output. At the input, parameter s contains 
the step size requested by the MARS particle tracking module, a pilot step. If boundary crossing is 
detected by the function, the value of s should be replaced by the pathlength passed by the particle 
till the volume boundary. Array vout should be filled with the particle phase coordinates at the end of 
step s, a value referenced by toff should be replaced by the time of flight till that point. The function 
should return zero upon successful completion, otherwise it should return -1. The special return code 
-9050898 tells MARS, that the trajectory is supposed to be continued by the propagate function of the 
custom stepper and should be interrupted in the MARS15 code. That is the case when the particle, 
moving in the beam aperture, is passed to the MAD-X PTC module. 

Object of the developed class can be declared then in the tgeo_init function and associated with 
a volume or node of the ROOT geometry model by calling SetUserExtension member-function of the 
TGeoVolume or TGeoNode class.  After that, at runtime, when the particle moves in a volume with the 
associated custom stepper, the propagate method of that stepper will be used to make a step in the 
volume, but only if IsApplicaple method of the stepper returns true for the given input parameters. 
Otherwise, the built-in MARS15 steppes are used to make a step. 

The technique described allows setting up special propagation rules in the dedicated regions 
without affecting underlining the MARS15 code. In general, it can be used to simulate arbitrary quasi-
continuous physical interactions which can be experienced by the particle on the path between 
discrete strong, weak, and electromagnetic interactions modelled by MARS15. Examples include 
modelling coherent interactions in a bent crystal and impact of a gravitational force. The following 
stepper classes were developed: 

1. MagFieldRK4Stepper – a stepper in magnetic field, 4-order Runge-Kutta-Nyström solver; 

2. BFieldRKStepper – a stepper in magnetic field, 8-order Runge-Kutta solver; 

3. CavityStepper – a stepper in time-dependent electromagnetic field, 8-order Runge-Kutta 
solver. 

Figure 2: Class diagram for custom steppers and fields 

 

Note that the applicability rules for the steppers designed to transport particle in the magnetic 
field require the presence of a magnetic field in the given volume. In Figure 2 this fact is indicated by 
the UML “dependency” (dashed line) connections between the stepper classes and the ROOT 



 

 

TVirtualMagField class. To satisfy the dependency, an object of a class derived from TVirtualMagField 
- FMapField, for example, must be associated with the volume, i.e. the object of the TGeoVolume class, 
using the TGeoVolume::SetField method. The developer needs to pay attention to the following facts:  
(1) ROOT allows the field association only with the TGeoVolume objects, there is no way to attach field 
to the geometry node (positioned volume); (2) the same TGeoVolume object can be referenced by 
multiple nodes; (3) all field classes defined in the STREG and other MARS15 libraries, contain the 
reference to the TGeoMatrix object, which is the argument of the field constructor function. The matrix 
defines transformation from the global reference frame to the local frame used for the field definition. 
If the same volume with the associated field is used in several nodes, the field inside all the nodes is 
calculated in the frame specified during the field object construction. In other circumstances, this 
behaviour can be considered either as a feature or a bug. The developer needs to be aware of this. 

The current STGEO library, initially developed for integration of the ROOT TGeo package to 
MARS15, has the polymorphic implementation of the “make-a-step” task which makes it possible to 
use a custom propagation algorithm for the certain particle types of a certain phase volumes. Thereby, 
the library provides a straightforward way for coupling the MARS15 code with other simulation codes. 

MARS–MAD-X coupling 

The tools described here are provided in the MARS MADX-BEAMLINE library and include the stepper 
class based on the MAD-X PTC module and a geometry generator for the sequence of elements 
described in the MAD-X file, the MAD-X-MARS15-ROOT Beamline Builder (MMRBB). It is assumed that, 
ideally, the MAD-X input file is prepared by an accelerator physicist and - besides a description of the 
beam and the element sequence the beam is supposed to propagate through - contains the statements 
to create the survey and Twiss tables. It is expected that the elements which have the same design are 
declared in the MAD-X input file as belonging to the same MAD-X class. For example, two classes of 
the Booster combined-function magnets are declared with the cross sections shown in Figure 3.   

Figure 3: Geometry of the Booster combined-function magnets as implemented in the MARS15 
model: DMAG class, defocusing dipole (left) and FMAG class, focusing dipole (right).   

 

There are 96 such dipoles in the Booster lattice which may have different magnetic fields so the 
implementation of the geometry model would take a considerable time even for a relatively small 



 

 

machine, like the Booster. The solution was found via MAD-MARS Beam Line Builder (MMBLB) which 
builds a longitudinal beam-aligned structure of the MARS geometry model using a MAD-generated 
optics file [11-13]. The MMBLB was successfully used by MARS users worldwide for 15 years. Recently, 
its capabilities have been substantially extended by switching to the MAD-X-MARS15 ROOT Beamline 
Builder (MMRBB). The general idea is to construct for each of the MAD-X class from the input file a 
generator of the three-dimensional representation of elements of that class, aka “factory” of the 
elements. In terms of the ROOT Geom library, the generator returns the unique instance of the 
TGeoVolume or TGeoVolumeAssembly objects filled with the geometry models of the MAD-X element. 
The generated object is placed then into the parent volume using a corresponding transformation 
matrix from the MAD-X survey module for the given element. It means that the creation of a survey 
table is mandatory in the MAD-X input file used in concert with the MARS15 application. 

A development of a generator for the three-dimensional representation of elements of the 
particular MAD-X class element is the application specific task. For the geometry generator 
implementation, a class derived from the C++ abstract class NodeGenerator needs to be implemented 
by the application developer. The main operations of the class are presented in a class diagram shown 
in Figure 4.   

Figure 4 Base abstract class for implementation of geometry generator 

 

The core function Assemble builds the element geometry model. This function is purely virtual in 
the base class, thus its definition in a derived class is mandatory. The meaning of the formal parameters 
is the following: Elinfo is a reference to the Section structure object containing complete information 
about the MAD-X element; SecVol is the beamline section volume. It is bounded by the shapes of the 
TGeoTube or TGeoCtub classes by default; FieldMtx – a transformation matrix which maps a global 
frame of the geometry model to a local frame used for definition of magnetic field in the element. 



 

 

When implementing the Assemble method for the magnets, two objects of the TMADX_BField 
and FMapField classes (see Figure 2) are created by means of the C++ new operator and used then as 
input parameters of the TGeoVolume::SetField method to specify magnetic field in the magnet 
aperture and its body, respectively. The TMADX_BField class is based on an analytical representation 
of the field using the multipole coefficients defined in the magnet description in the MAD-X file. The 
parameter Elinfo from the argument list of the Assemble is passed to the constructor on creation of 
the TMADX_BField class object. The FMapField class is based on a tabular representation of the field. 
Building the class object, the developer needs to specify a reference to a table, often called the field 
map, which defines mapping between coordinates in a local reference system of a magnet to the 
components of the magnetic field vector. One more parameter passed to the constructor is a matrix 
which defines transformation of the local coordinates to the global frame of the model. A reverse 
matrix defines reverse transformation.  The field map instance needs to belong to the class derived 
from the FMapField, and ReadFile and GetField functions, which are pure virtual in the ancestor. 
Generally, these functions could be implemented for three-dimensional magnetic field distributions, 
but in most cases, a 2D hard-edge approximation is quite adequate. The class TFiledMap2D provides 
the ReadFile function which reads an ASCII file generated by the OPERA code and implements the 
quadratic interpolation in the GetField function. Creation of the MAD-X/PTC stepper can also be done 
in the Assemble function. This is as easy in implementation as allocation of an object by means of the 
C++ new operator. A constructor of the MADXStepper class has two parameters. The first one is the 
same as that used for building the TMADX_BField class object. The second one is an array of 6 values, 
which has the same meaning as MAXAPER parameter in the PTC_TRACK command and is used for the 
same purpose. In the MAD-X, it is an “array defining upper limits for particle coordinates, essentially 
defining the aperture to trigger particle loss”. It is also used in MARS15 as an acceptance window for 
the stepper. Association of the stepper object with the aperture volume is performed the same way 
as for the steppers described in Section “MARS STREG library”. The following needs to be implement 
to the tgeo_init function to build a beamline model: 

1. Call NodeGenerator::DefineWorld static method. The function sets up the volume specified in 
the argument as the container for entire beamline.  

2. Call NodeGenerator::SetRsec static method. The beamline is built of the cylindrical sections – 
the volumes bounded by the objects of the TGeoTube and TGeoCtub classes. These sections 
supposed to be daughters of the volume used in the argument of the 
NodeGenerator::DefineWorld method. Each section contains the element geometry model 
created by the Assemble method. This is used to specify the outer radii for all the sections. The 
length of each the section corresponds to the length of the element. Reference to the section 
created by the beamline builder is passed to the Assemble method via the SecVol parameter. 
The number of sections created by the beamline builder is equal to the number of the non-
zero length elements in the MAD-X file. 

3. Create objects of the developed classes derived from NodeGenerator in memory. As it follows 
from the diagram shown in Figure 4, a string referenced as Name must be passed to the 
constructor of the base class. The Name is the name of the MAD-X class. Every time the object 
of the derived class is created, the base class constructor automatically saves its pointer to the 
static map Vol indexed by Name. The Vol is used then to find the appropriate geometry builder 
for the element of the MAD-X sequence. The memory allocation for the object of the class 
derived from NodeGenerator implicitly adds it to the map. 



 

 

4. Call int madx(char* fname) function provided by the MARS-MADX-Beamline library. The 
function initiates the MAD-X session which is started from the execution of the MAD-X file 
given as the argument. The geometry construction starts after completion of the file 
processing by the MAD-X interpreter. For each element of the MAD-X sequence, the function 
tries to retrieve the geometry generator object from the map generated in step 3, using the 
MAD-X class name of elements as the key. On success, the virtual functions of the object are 
used to construct the section and geometry model of the element. If the geometry generator 
specific to the MAD-X class of the element is not found, the function tries to find a geometry 
generator mapped to the “default” keyword. As a last resort, the function creates just a 
cylindrical section with a length of the MAD-X element with the outer radius from step 2 and 
placement retrieved from the survey table. In the case that the geometry generator mapped 
to the keyword “Tunnel” is provided by the model developer, the tunnel becomes the 
daughter volume for the section volume, and the deepest node of the tunnel serves as a 
container for the element geometry model.   

 The MAD-X session initiated at step 4  continues until completion of the run. It is correct to think 
that MAD-X and MARS run concurrently with the synchronous execution of the MAD-X statements 
given as arguments of the madx_stmt function, called from the MARS15 code. In particular, if objects 
of the MADXStepper class were associated with the aperture volumes in the Assemble methods of the 
geometry builder objects created at step 3, the MAD-X commands PTC_CREATE_UNIVERSE and 
PTC_CREATE_LAYOUT are issued from tgeo_init routine followed by the call of the PTCTrackingActive() 
service function. The latter unlocks the steppers and provides the automatic execution of the MAD-X 
commands needed for the normal termination of the MAD-X PTC tracking and session itself upon 
completion of the MARS run. The library tools allow rapidly obtaining the working MARS15 model for 
the entire or any part of the beamline described in the MAD-X file and then gradually complicate the 
geometry and tracking models by means of the features provided by MARS15-MAD-X and ROOT. As a 
result, the same geometry model is used to transport particles in both MARS15 and MAD-X PTC parts. 
Beam particles assumed as lost in the MAD-X PTC module are taken care of by the MARS modules. If a 
particle is inside the acceptance of the MAD-X PTC tracking module, then the trajectory is passed for 
simulation to the MAD-X modules. An example of the application where cross-talk between two codes 
was used is given in the next section. 

 

New Booster collimation unit optimization studies 

As described in the introduction, a proposal [8-10] - driven by limitations of the Booster physical 
aperture - calls for a replacement of the current two-stage collimation system with one or two 
“collimation units” made of a thick primary collimator followed at a short distance by a secondary 
collimator for the quasi-local absorption of the beam halo [14]. The newly-developed MARS15-MAD-
X system was used for the optimization modelling of the collimation efficiency and radiation 
environment around the proposed “collimation units” with preliminary results described in [15]. 

The Booster lattice consists of 24 sections, also referred as periods. The period is represented in 
the MAD-X file as the line [16]. To build the MARS model shown in Figure 5 (left), three lines (sequences) 
were included in the resulting sequence generated by the Booster MAD-X file: BCEL08, BCEL09, BCEL10.  
The total length of the resulting sequence is 59.3 m. The entire beamline in the sequence is wrapped 
in a uniformly shaped tunnel shown in Figure 5 (right). The origin of the coordinate system in the model 
is at the entrance to the BCEL08 line. Each of the periods consists of four dipole magnets. Corrector 
magnets shown in Figure 6 are located at the upstream ends of the first and third dipoles in each of 



 

 

the periods. The long drift spaces between the second dipole and corrector in each of the periods are 
supposed to be used for installation of the new collimation unit. 

Figure 5: MARS15 model of the Booster periods 8-10 with the collimator unit in the long 
straight section 8 (left). Tunnel cross section (right). 

    

 

Figure 6: MARS15 model of the Booster corrector.   

 

 A new drift class was added to the MAD-X file and the element of this class was inserted in the 
BCEL08 line with a corresponding geometry generator created as a placeholder for the collimation unit 
installed in other period(s). The model can easily be extended to the full ring by adding the period lines 
in the resulting sequence of the MAD-X file. 

The MAD-X PTC steppers are attached to the aperture volumes. Beam halo trajectories 

generated by means of the steppers are shown in Figure 7. The trajectories are shown in the coordinate 

system defined with respect to the design orbit for the Booster periods 7 and 8. The opportunity to 



 

 

rapidly change the range of elements included in the MARS model via MAD-X file configuration was 

used here. Vertical lines show boundaries of the elements from the MAD-X file. Yellow regions are the 

dipole magnet poles. Purple regions are metal parts representing the beam pipe and collimation unit 

installed in the Booster period 8. The copper primary collimators are followed by the massive 

secondary ones made of stainless steel and assembled in a single module (unit). In this study, the 

primary collimator thickness is varied in the range T0 ≤ t ≤ 16T0, where T0 = 1.016 cm. The jaws of the 

secondary movable collimator have a total length of 60.96cm with the length of the flat part being 

40.64cm.  The aperture of stationary stainless-steel masks is 7.62×7.62 cm, with a total length of 45.72 

cm and a flat part length of 25.4 cm. The unit is encapsulated in the steel shielding with overall size 

60×60×400 cm (see details in Figure 10 below). 

Figure 7. Proton trajectories of the 3.0 to 3.9 σ range through the two Booster periods with 

the collimation unit implemented (beam coordinate system, side view) 

 

Contrary to the canonical two-stage approach used nowadays in multiturn collimation systems 

[17], the new Booster collimation unit is aimed at the single-pass beam halo shaving done at the proton 

injection energy of 400 MeV. The unit includes a relatively thick copper primary collimator, aimed to 

substantially increase a momentum spread of the scattered particles, and a massive secondary 

collimator(s), designed to intercept these particles in a local manner. 

In this study, the proton spectra 𝑑𝑁𝑝𝑎(𝐸, 𝑡)/𝑑𝐸  inside the aperture at the exit from the 

collimation unit (Figure 8) were simulated with the integrated MARS15–MAD-X system for the 

optimization of the primary collimator thickness 𝑡 with respect to the highest collimation efficiency. 

The beam halo hits the aisle-side jaw of the horizontal primary collimator. The opposite jaw is in the 

garage position. The vertical coordinates (𝑦𝑚𝑎𝑑 , 𝑣 =  𝛼𝑦𝑦𝑚𝑎𝑑 +  𝛽𝑦𝑝𝑦  are sampled from the 

restricted Gauss distribution with zero mean value and standard deviation 𝜎𝑦 = 0.635 𝑐𝑚 in such a 



 

 

way that 𝑎𝑏𝑠(𝑦𝑚𝑎𝑑) < ℎ , where ℎ is the half-height of the horizontal jaw. The horizontal coordinates 

are sampled from the uniform distribution 𝑤(𝑥𝑚𝑎𝑑) = (𝑏 − 𝑎)−1, where 𝑎 = 3𝜎𝑥 = 1.126 𝑐𝑚 is the 

jaw opening, 𝑏 = 𝑎 + 1𝑚𝑚 . For this study the conservative scraping rate 𝑁𝑎 = 3.89 × 1012 𝑠−1 was 

used, which is 5% of the total beam intensity after the upgrade planned for the Booster. Jaws of 

secondary collimators in the considered collimator unit – both vertical and horizontal – were aligned 

with the 3𝜎𝑥,𝑦 + 2𝑚𝑚 beam envelope. Figure 8 shows the calculated  𝑑𝑁𝑝𝑎(𝐸, 𝑡)/𝑑𝐸 spectra. For the 

primary collimator reference thickness 𝑡 = 𝑇0, the spectrum has a pronounced maximum at 380 MeV. 

For larger 𝑡 , the peak is shifted to lower energies of a decreased height. The peak disappears if the 

thickness exceeds a proton interaction length of 15 cm in copper.  

Figure 8: Proton spectra 𝒅𝑵𝒑𝒂(𝑬, 𝒕)/𝒅𝑬 at the collimaton unit exit for several thicknesses of the 

primary copper collimator for the entire energy range for t/T0 = 1, 8 and 16 (left) and its high-
energy part t/T0 = 1, 2, 4 and 8 (right) 

      

One can now calculate the number of protons above a certain kinetic energy threshold thE in 

the aperture at the collimation unit exit relative to the scraping rate aN , i.e. to the number of beam 

halo protons hitting the primary collimator jaw per second 

𝑁𝑝𝑎(𝐸𝑡ℎ, 𝑡) =
1

𝑁𝑎
∫ 𝑑𝐸 𝑑𝑁𝑝𝑎(𝐸, 𝑡)/𝑑𝐸

𝐸0=400 𝑀𝑒𝑉

𝐸𝑡ℎ

 

 This quantity can be referenced as a collimation inefficiency. Then the collimation (absorption) 

efficiency is 1 paN = − . The collimation inefficiency is shown in Figure 9 as a function of the energy 

threshold thE for the primary copper collimator thickness in the range 01 / 16t T  . For the relevant 

to the system performance threshold energies 0.32 0.38thE  GeV, the collimation (absorption) 

efficiency could be as high as 0.9 = at 
0

t T= , 0.95 = at 
0

2t T= , and 0.995 = at 
0

8t T= . 



 

 

Figure 9: Collimation inefficiency as function of energy threshold for several thicknesses of the 
primary collimator jaws  

  

 

Figure 10:  Plan view of the MARS15 model of the collimation unit in the beam coordinate system 
with primary collimators (red), as well as tapered masks and movable secondary collimators 
(purple). The unit is surrounded by steel shielding (grey) encapsulated in marble (light grey). 

 

 A MARS15 model of the collimation unit is shown in Figure 10. The unit includes two horizontal 
primary collimators right (phr) and left (phl) of the beam axis, two vertical primary collimators above 
(pva) and below (pvb) of the beam axis, two fixed aperture masks (mask1 and mask2) along with 



 

 

movable horizontal (shmr and smhl) and vertical (svm) secondary collimators. The fractions of 250-W 
beam halo power deposited in the collimation unit jaws are given in Table 1 for three thicknesses t of 
the primary collimators. The power deposition in the primary collimator active jaw (phr in this 
simulation) grows linearly with t in the range 1 ≤ t/T0 ≤ 4, saturating at larger thicknesses. That quantity 
at the exit of the collimation unit (mask2) decreases linearly with t in the entire range studied 1 ≤ t/T0 

≤ 16, consistent with the shown above increase of the collimation efficiency 1 paN = − . This effect 

is also clearly seen in Figure 11 for evolution of the hadron flux density above Eth = 1 MeV along the 
collimation unit and its substantial reduction at the downstream end of the unit for a thicker primary 
collimator. One can conclude here that the primary collimator with a thickness in the range 4 ≤ t/T0 ≤ 
8, or roughly 4 to 8 cm of copper, provides the desirable increase of the collimation efficiency, with t 
= 8T0 being a thickness of choice. 

Table 1:  Fractions (%) of beam halo power 250 W deposited in the collimation unit jaws.  

t/T0 phr phl mask1 shmr shml svm mask2 

1 5.53 0.014 20.04 13.2 20.1 8.72 0.3 

4 21.6 0.21 20.8 4.48 5.95 1.03 0.07 

16 54.0 2.0 9.27 0.15 3.71 0.65 0.02 

 

Figure 11: Hadron flux density above Eth = 1 MeV in the collimation unit for two thicknesses of the 
primary collimator 𝒕 = 𝑻𝟎 (left) and 𝒕 = 𝟖 𝑻𝟎 (right). 

 

 The hadron flux density above Eth = 30 MeV is often used for quick estimations of air activation in 
accelerator tunnels as well as ground and sump water activation of the soil outside the tunnel walls. 
The map of this quantity is shown in Figure 12 (left) in the collimation region and nearby downstream 
region. The total prompt dose map is shown in Figure 12 (right). The analysis has shown that with the 
optimized steel-marble shielding around the unit described above, the radiation field is adequately 
contained in the region with the prompt dose levels on the berm, residual dose rates on the shielding 



 

 

outside and radiation loads on the sump water being below the administrative limits with required 
safety margin. Residual dose rates on the upstream ends of the hottest machine components (Figure 
13) are high – although quite typical for the Booster magnet faces – and may require implementation 
of steel masks in those regions  

Figure 12: Hadron flux density distribution above Eth = 30 MeV (plan view, left) and total prompt 
dose distribution (side view, right) in the tunnel and outside the walls for the collimation unit 

region and the first 40 m downstream it.  𝒕 = 𝟖 𝑻𝟎 in both cases. 

    

 

Figure 13: Residual dose isocontours on contact at the first dipole (left) and corrector magnet 
(right) downstream of the collimation unit after 100-day irradiation and 4-hours cooling. 

 

 

 



 

 

Conclusions  

The functionality of the STREG library of the MARS15 code which interfaced the ROOT geometry 
package with the MARS tracking engine has been extended through the polymorphic implementation 
of a “make-a-step” procedure. The polymorphism provides an opportunity to substitute the built-in 
MARS15 steppers by a user-defined algorithm without any changes in the main code. The approach 
was comprehensively tested and refined in implementation of the steppers for particle transport in 
magnetic and time-dependent electromagnetic fields. A stepper based on the MAD-X PTC module was 
implemented to the MARS15-MADX system making it even more powerful in accelerator and beamline 
applications. 

 The system described in this paper was developed, thoroughly tested and refined in the MARS15 
code applications to the needs of the ESS, ILC, MAP and FCC projects. It has been successfully applied 
to the design optimization of the new Fermilab Booster collimation system. The parameters of the 
introduced collimation unit have been optimized with respect to the highest collimation efficiency. It 
was found that the primary collimator thickness should be 4 ≤ t/T0 ≤ 8, or roughly 4 to 8 cm of copper, 
with 8 cm being preferable. The final decision here is to be made based on thermomechanical analyses.  
The collimation unit shielding was optimized to provide the tolerable radiation fields in the unit itself, 
downstream magnets, in and around the tunnel.  
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