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Grand Challenges and How We’re Addressing Them

• Grand challenge #1 (beam intensity): 
• Better online models and tuning algorithms will enable accelerators to operate closer to 

the ideal configurations

• Grand challenge #2 (beam quality): 
• Improved controls will help operational machines realize theoretical limits on beam 

quality

• Grand challenge #3 (beam control): 
• Better online models and tools integrated with accelerator operations directly address 

the need for better beam control

• Grand Challenge #4 (beam prediction): 
• Online modeling using as-built simulations augmented with measured data from the 

machine is a powerful tool for beam-prediction
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How do better online tools impact the DOE mission?

• The primary scientific mission of the ABP thrust is to address and resolve the Accelerator and 
Beam Physics Grand Challenges. Other equally important ABP missions are associated with 
the overall DOE HEP missions:
• Advance physics of accelerators and beams to enable future accelerators
• Uniform tools enable easier collaboration and allow scientists and engineers to more quickly 

solve challenging control problems 

• Develop conventional and advanced accelerator concepts and tools to disrupt 
existing costly technology paradigms in coordination with other GARD thrusts
• The next generation of accelerators requires advanced controls to meet their performance 

metrics

• Guide and help to fully exploit science at the GARD beam facilities and operational 
accelerators
• Improved controls at facilities maximize beam time for users and enable more cutting edge 

physics

• Educate and train future accelerator physicists
• A library of working ML examples lowers the barrier to entry for scientists solving problems in 

accelerators
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Machine agnostic tools will help the community advance together

• Some online modeling, analysis, and tuning programs in use or under development
• MATLAB Middle Layer / Accelerator Toolbox (Spear3 + NSLS-II + Others)
• OCELOT (DESY + SLAC + Others)
• GPU Accelerated PARMILA (LANL)
• RHIC Lattice Translator (BNL + Plans for EIC)
• LUME, Simulacrum (SLAC)
• PyEpics (in use at APS / JLab / SLAC)
• LCLSTools (SLAC)

• A proposed path forward: bridge gaps between accelerator facilities by integrating 
tools into an intuitive interface with a library of worked examples
• Browser-based GUIs lower the barrier to entry and enable more seamless collaboration
• Library of successful examples will allow users to quickly build robust custom solutions
• RadiaSoft plans to test and deploy such tools at BNL, JLab and Fermilab
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Surrogate modeling enables rapid optimization of high brightness photo 
injector
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Verifying Pareto front from the neural network

Required 130x fewer simulations
and had 106  times faster 

execution in the optimization

In some cases, optimization over simulation takes too long to converge

à validate Pareto front from neural network more directly
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A. Edelen, et al., PRAB 23, 044601 (2020)
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Machine learning techniques enable rapid assessment and correction of 
machine settings to achieve desirable phase space parameters

A. Scheinker, A. Edelen, et al., PRL 121, 044801 (2018)
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Analysis	and	Machine	Learning	Tools
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Prototype web tools for controls
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Prototype web tools for analysis and ML
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Transfer learning enables portable solutions between accelerators

• Case Study: The Fermilab linac
• Neural networks trained on data 

from DTL Tanks 2, 3, and 4 for 1k 
epochs
• Model from tank 2 is trained on data 

from tanks 3 and 4 for 1k epochs
• Transfer learning trains faster and 

reaches a better overall solution



# 2115 April 2020 – Fermilab

Inverse models for Beam steering in the ATR

• Optimization (top)
• Connect MAD-X simulation to 

python optimization tools using 
our middle layer 

• Study convergence rate for 
tuning the trajectory over a 
range of initial offsets 

• Direct optimization is time 
consuming on average took 2k 
iterations to converge

• Machine Learning (bottom)
• Build inverse model of bpm-

readings to corrector settings
• Make feed-forward correction
• Inverse models are fast and 

effective
• Single iteration generates a 

solution almost as effective as 
optimization
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What are some of the challenges for ML and online tools?

• Machine Learning means data: but not just any data
• Carefully curated, archived, and cleaned
• Large amounts of data can be required 

• Data rates are a potential challenge for browser based tools 
• Data archiving 

• Identifying correct parameters and ensuring time alignment or pulse ID

• Machine models
• Many machines do not have up-to-date as-built models 
• Improving these models reduces demand on data-collection 
• It may not be possible to build models for old machines as survey data or field maps may 

not exist
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Roadmap

Year 1 Year 2 Year 3 Year 4 Year 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Machine agnostic toolbox
Browser based tool development

Control system connections
Automate deployable code generation

Milestone 1: Accelerator focused ML toolbox

Test deployment at single lab
Roll out at two or more labs

Milestone 2: Toolbox integration across DOE

Algorithm development and deployment
Surrogate model libraries

Tuning algorithm development
Integration with tracking codes

Milestone 3: Libraries of working example

Surrogate model testing and deployment
Tuning algorithm testing and deployment

Milestone 4: ML tools integrated with opetations

1
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• Grand challenge #1 (beam intensity): 
• Better online models and tuning algorithms will enable accelerators 

to operate closer to the ideal configurations

• Grand challenge #2 (beam quality): 
• Improved controls will help operational machines realize theoretical 

limits on beam quality

• Grand challenge #3 (beam control): 
• Better online models and tools integrated with accelerator 

operations directly address the need for better beam control

• Grand Challenge #4 (beam prediction): 
• Online modeling using as-built simulations augmented with measured 

data from the machine is a powerful tool for beam-prediction

Our aim is to bridge gaps between accelerator facilities by developing machine 
agnostic tools that integrate machine learning, accelerator simulation codes, and 
accelerator operations


