

Advanced instrumentation for model-based beam loss control in high intensity hadron linacs

GARD APB Workshop 2, WG1

Sasha Aleksandrov, on behalf the SNS Project

April 16, 2020

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

The Science: Controlling Beam Loss at High Intensity

- Beam loss and radiation scales roughly with beam intensity in a proton linac
 - Scaling to 10 MW results in *unserviceable accelerator* in many regions
- Goal is to achieve 10 MW without 10x radiation

The Science: predicting beam loss in a hadron linac using computer simulations

- Required components
 - PIC tracking code /not subject of this talk/
 - Reliable beam line description
 - Initial distribution of particles
 - Verification tools

Provided by beam measurements

Beam Instrumentation requirements

- High dynamic range: $\sim 10^6$
 - To resolve small fraction of 'halo' particles in presence of high intensity core
- High dimensionality of phase space measurements: 2,4,6
 - Data represented in format interchangeable with PIC code
 - -(x,x')(y,y')(z,z') or (x,x',y,y')(z,z') or (x,x',y,y',z,z')
- Multiple points of measurement along beam line

SNS 6-dimensional phase space scanner at 2.5MeV

Actional Laboratory

The main results so far:

×

- It is doable
- RFQ output 6-d distribution is much more complex than typical representation in simulations
- There are non-trivial correlations between planes

5

Multi-dimensional high dynamic range measurements at 2.5MeV

An example of a measured 4-d partial projection of the distribution function, plotted on a logarithmic scale.

Actional Laboratory

An example of 2-d horizontal emittance measured with $DR = 10^5$ at the SNS Beam Test Facility, plotted on a logarithmic scale.

The four panels show the same distribution with different threshold applied for noise suppression.

Laser wire direct emittance measurement at high energy is an option for H- beam

Layout of SNS laser wire emittance scanner

- Slits cannot be used at high energy
- Laser wire is an option for H- beam
- No known option for proton beam

Horizontal emittance of a 1GeV beam measured using the SNS laser emittance scanner. The same data are shown in linear (left) and logarithmic (right) scale.

OAK RIDGE HIGH FLUX National Laboratory REACTOR

High dynamic range phase-space tomography is an option for high energy proton beam

- Wire scanners can provide high dynamic range 1-d profiles, > 10⁵
- An algorithm is required to reconstruct 2-d or 4-d distribution with correspondingly high dynamic range
- Iterative application of MENT algorithm showed promising results

Actional Laboratory

8

An example of high dynamic range phase-space tomography reconstruction. The measured proton beam profiles at several wire scanners are shown in red. The corresponding profiles calculated from the reconstructed 2-d distribution are shown in blue.

The reconstructed 2-dimensional distribution is shown in the bottom right panel.

General relation between the measurement dynamic range and dimensionality of the scan.

Examples of what is experimentally demonstrated in today's state-of-the art measurements are shown by the markers:

red circles - the SNS BTF multi-dimensional scanner,

blue square - the SNS 1GeV laser emittance scanner,

green diamond - the phase-space tomography reconstruction from 1D wire scanner profiles

'A-Z scan' is a tool to measure non-linear transport map from injector to any point in linac

- Transport map is measured in wide range, up to acceptance boundary
- Transport map can be measured to multiple points in a linac simultaneously
- Measurement is essentially noninterceptive
- No special hardware is needed in linac

10

Timeline

- Multi-dimensional scan at 2.5MeV
 - 10x10x3 plan.
 - Increase dynamic range by x10, decrease scan time by x10 over 3 years
- Laser wire 2-d emittance measurement at 1GeV
 - Achieve 10⁴ dynamic range by end of 2020
 - Uncharted territory after that; no reliable timeline
- High dynamic range phase-space tomography
 - On back burner due to lack of manpower; no reliable timeline
- A-Z scan
 - Add measurement point between warm and cold linacs by end of 2020
 - Continue adding measurements points over next few years

Potential Challenges and Delays

- Making sense out of 6-d data can be insurmountable challenge
- Extending laser emittance dynamic range beyond 10⁴ is uncharted territory, can be prohibitively difficult
- SNS BTF uses spare SNS RFQ; potentially can have long operation interruptions if RFQ swap is needed

Ties-In with Grand Challenges

Grand challenge #1 (beam intensity): How do we increase beam intensities by orders of magnitude?

To increase intensity by an order of magnitude in a hadron linac, we need to **control losses an order of magnitude better**.

Grand challenge #3 (beam control): How do we control beam distribution down to individual particles?

To control a distribution we need to learn how to measure it down to individual particles

Grand challenge #4 (beam prediction): How do we develop predictive "virtual accelerators"?

Content of previous slides

13

Relationship to HEP, NP, and BES Missions

Broadly applicable to anyone with a hardon linac, but, specifically:

HEP: Relationship to HEP mission is in the Intensity Frontier

BES: Relationship to BES mission is also intensity frontier for future proton driver applications

NP: Relationship to NP is in intensity frontier for future hadron drivers and heavy ion linacs

Resources for Project

• Who?

- Right now, SNS team
- Anyone with a linac or front-end test facility can work on diagnostics R&D
- Anyone can work on high-dimensional data analysis algorithms and HDR phase space tomography

• Where:

- Right now, SNS Beam Test Facility and SNS linac

• Facilities Needed:

- Medium Energy Test Accelerators
 - SNS
 - Fermilab
 - LANL, BNL ?