
NOvA Software and FMWK
A simple framework for HEP data analysis and
reconstruction
http://enrico1.physics.indiana.edu/fmwk

Mark Messier
Indiana University
Fermilab Neutrino Experiments Computing Workshop
March 12,13, 2009

1Monday, March 9, 2009

http://enrico1.physics.indiana.edu/fmwk
http://enrico1.physics.indiana.edu/fmwk

NOvA Specifics

• NOvA will operate three detectors to search for electron neutrino appearance
in a muon neutrino beam

- An Integration Prototype Near Detector

- A near detector underground adjacent to the MINOS detector

- A far detector located in Ash River, MN

• Timeline:

- IPND next year

- First data in near and far detectors in 2012

• Number of users

- Currently 28 institutions, 111 physicists 7 of which are graduate students.

- Expect numbers to be comparable to MINOS as experiment reaches data
taking stage

- Like MINOS, large fraction of collaboration is off the FNAL site

2Monday, March 9, 2009

Framework

• Reconstruction

- FMWK (more on this later)

• Simulation

- gnumi GEANT-3 based beam simulation. g4numi likely in future.

- GENIE neutrino event generator. NEUGEN being phased out

- CRY cosmic-ray generator

- GDML geometry markup language

- Geant3/Geant4 via ROOT’s Virtual Monte Carlo for detector simulation

• Data analysis

- ROOT (ntuple/histograms)

- PostgreSQL database

3Monday, March 9, 2009

What is FMWK? Why is FMWK?

• FMWK provides
- Event data format

- Input/Output

- Standard methods to read and write user-created objects to events

- Framework for modularized reconstruction and analysis jobs

- Run-time configuration framework

- Event display shell

- Database interface tools

- XML interface tools

• FMWK has its origins with the MIPP experiment which needed a C++-based
analysis framework starting in about 2001. At that time the options were
limited: GAUDI and MINOS. For different reasons, neither seemed to be a
good fit.

• After being used by MIPP, pieces started getting used by other projects so I
started the process of “de-MIPP-ifying” the code. Now being used by NOvA
and LqAr groups at FNAL.

4Monday, March 9, 2009

My goals in writing FMWK

• Main goal: Simple things should be simple. Complex things should be possible.
Where there is a conflict between these, err on the side of simplicity.

• To me, keeping things simple means:
- Think about users’ (reconstruction code author) goals and how they would “like” to

accomplish those goals.

- Keep interfaces streamlined. Limit users’ options but make intelligent choices. Provide
exactly one “good” way to do something.

- Avoid interface levels and layers of redirection.

- Only implement what is needed by users. Avoid lots of “what if’s”.

- Keep external library dependencies to a minimum.

- Leverage existing tools and follow standards as much as possible:

‣ Standard Template Library

‣ Text parsing: XML (xerces-c)

‣ I/O: ROOT

5Monday, March 9, 2009

EventDataModel
Defines the event
data format and

read/write interfaces
to event data

JobControl
Defines interfaces

for building jobs out
of “modules”.

Provides executable
“ana” which is

extended at run time

IoModules
Maps event data onto files in

read and write modes.

jobDefinition.xml

moduleConfig.xml

Config
Defines interface

between
modules and
configuration

data

XMLInterface
Interface to xerces-c
XML parser. Allows

for easy extension of
the XML tags

handled and their
mapping onto C++

objects

EventDisplayBase
An event display template.

Integrates IoModules/
JobControl and Config into

display program.

data.root

data1.root histos.root

DAQ or MC Generator

ana

evd root

Left: An FMWK workflow
Right: Supporting FMWK packages

FMWK Overview

module.h/cxx

file

program

Package

6Monday, March 9, 2009

Event format : EventDataModel

• All event data indexed by run/subrun/event numbers and a time stamp.

• Events are based on a collection of ROOT TFolders. Each folder represents a
different stage of event processing:

• MC: Output from Monte Carlo generator

• DetSim: Output from detector simulation

• Raw: Uncalibrated detector data

• RawAux: Uncalibrated detector data. Useful if single detector element dominates data stream.

• Cal: Calibrated detector data

• Reco: Recostruction objects (tracks, showers, vertices,…)

• User: Scratch pad (seldom used, not really required)

• Summary: DST-style summary data for the event

• Event constructed to allow partial I/O of above pieces.

7Monday, March 9, 2009

Event format : EventDataModel

• Reading:
void AFunc(const edm::EventHandle& evt)
{
 // MyObject is a user-defined object inheriting from ROOT’s TObject
 std::vector<const MyObject*> objs;
 evt.Raw().Get(“./myanalysis”,objs);
}

• Writing:
void AFunc(edm::EventHandle& evt)
{
 // MyObject is a user-defined object inheriting from ROOT’s TObject
 std::vector<MyObject> objs;
 // Do what you do to make objs...
 // ...
 // Copy them into the event
 evt.Raw().Put(objs, “./myanalysis”);
}

8Monday, March 9, 2009

Dump of run = 30015860.414 event = 1 file
= /data/en/2a/users/messier/c120mc.root
evt.Header()
===
evt.DetSim()
|-* hits
|-* tpc
 |-* MCCHits[1406]
|-* tof
 |-* MCCHits[14]
|-* tofCalib
|-* dc1
 |-* MCCHits[36]
|-* dc2
 |-* MCCHits[24]
|-* dc3
 |-* MCCHits[20]
|-* rich
 |-* MCCRICHHits[1981]
 |-* MCCHits[9]
|-* t0
 |-* MCCHits[18]
|-* veto
|-* scint
 |-* MCCHits[9]
|
===
evt.MC()
|-* kine
 |-* MCCParticles[79]
|-* vert
 |-* MCCVertexs[62]

|-* match_vtxdafit
 |-* MCMatchess[9]
|-* match_vtxconfit
 |-* MCMatchess[9]
===
evt.Raw()
|-* trig
 |-* TPCEventInfos[1]
|-* bckov
|-* dc1
 |-* DCDigits[29]
|-* dc2
 |-* DCDigits[23]
|-* dc3
 |-* DCDigits[18]
|-* hcal
 |-* ADCDigits[8]
|-* mwpc1
 |-* MWPCDigits[9]
|-* mwpc2
 |-* MWPCDigits[8]
|-* rich
 |-* RICHDigits[48]
|-* t0
 |-* TOFDigits[13]
|-* ckov
 |-* CKOVDigits[96]
|
===

% edm_dump /data/en/2a/users/messier/c120mc.root

9Monday, March 9, 2009

Building jobs : “JobControl”

• Basic unit is a Module which is run as a Node inside a job

• User provides implementation of a class following the interface defined by the
jobc::Module base class. eg. “MyTrackFitter.h/.cxx”

• User provides configuration data for the module in an XML file. eg.
“MyTrackFitter.xml”

• With these provided they can be linked into the standard “ana” job:

% ana -x myjob.xml -g myhistos.root -o outputfile.root inputfile.root

10Monday, March 9, 2009

Sample job definition

<jobdoc>

 <xmlfile>
 TrkRBase.xml TPCReco.xml SPFit.xml VtxDAFit.xml
 </xmlfile>

 <link>
 Minuit TPCResCor NumericalMethods
 Swimmer SPFit VertexReco
 </link>

 <job name="Tracking">
 <node sequence="TrkRBase" filter="off"/>
 <node sequence="TPCReco" filter="off"/>
 <node module="SPTrkBuilder" config="default" reco="1" ana="0" filter="off"/>
 <node module="VtxDAFit" config="default" reco="1" ana="0" filter="off"/>
 </job>

</jobdoc>

Loading configuration data

Linking libraries

Building job
A sequence is a list of related modules

11Monday, March 9, 2009

Run-time configuration : “Config”

• Stored in XML files:
<configdoc>

 <config name=”Sample” version=”default”>

 <param name=”AFloat”> <float> 10.0 </float> Sample float

 <param name=”AnInt”> <int> 2 </int> Sample integer

 <param name=”AVector”> <int> 1 2 3 </int> Sample vector of integers

 <param name=”AString”> <string> Zowie! </string> Sample string

 </config>

</configdoc>

• C++ classes register themselves as clients and implement “Update” method:
void MyClass::Update(const cfg::Config& c) {

 c(“AFloat”).Get(fFloatMemberData);

 c(“AnInt”).Get(fIntMemberData);

 c(“AVector”).Get(fVectorMemberData);

 c(“AString”).Get(fStringMemberData);

}

• Framework ensures that Update() is called when configuration is loaded or
modified.

• Standard GUI interface provided by EventDisplayBase

12Monday, March 9, 2009

Event display tools : EventDisplayBase

• FMWK makes no attempt to provide an interactive shell for running jobs. All
interactive use is expected to be through an event display.

• The EventDisplayBase package provides a shell which users can use to build event
displays.

• Provides a window base class with buttons and menus connecting the program
to the I/O, JobControl, and Config packages as well as print utilities.

• Provides a blank canvas on the window. Users fill this canvas in with
representations of their detector and its associated data.

• Supports multiple views of the detector data within same program

• Allows users to interactively bring up configuration data on module-by-module
basis, edit, re-reconstruct, and view results.

• Of all the FMWK packages, this one is the least well developed and in my opinion
the likeliest to change as it gets used more

13Monday, March 9, 2009

Screen shot of the window provided by the EventDisplayBase package (program: test_evdb). The dialog window was
launched by selecting “Job/Edit Config” and shows how to edit module configurations. Hitting “Apply” would cause any
reconstruction to be re-applied and the event re-displayed. User’s are responsible for filling the big blank window with some
representation of the data from their detector.

➚

file name would appear here...

TCanvas for drawing...

14Monday, March 9, 2009

Full analysis chain from raw data to paper

• N/A

15Monday, March 9, 2009

Full simulation chain

Goal Program Input Output Helpers

Neutrino flux calculation gnumi FFREAD card of geometry Neutrino PAW ntuples GEANT3/PAW

Neutrino 4-vector generation gGENIE GDML detector geometry FMWK file of neutrino 4
vectors

GENIE

Cosmic ray rate calculation gcosmic GDML detector geometry FMWK file of cosmic-ray 4
vectors

CRY cosmic ray generator

Overlay neutrinos and cosmic rays none yet...

Detector tracking ana
4-vectors and GDML

geometry
energy depositions

GEANT3/GEANT4/ROOT
VirtualMC

Light simulation ana energy depositions photons at APD

Electronics simulation ana photons at APD APD digitizations

Initial calibration ana APD digitizations T/Q Hits

Time clustering ana T/Q Hits time slice

Spatial clustering ana time slice spatial cluster

Fitting ana clusters
“prongs”, reconstructed 4-

vectors, vertices

Particle ID root DST
mu-like / e-like / NC-like

assignments

Physics plots root + others DST+ others plots Oscillation code

16Monday, March 9, 2009

Calibration procedures

• At this point, we only undo what the detector simulation does

• Charge

- ADC to photo-electron conversion is a constant

- Attenuation correction based on information from adjacent planes

- Others??

• Timing

- TDC = MC time * constant

- t = TDC/constant

17Monday, March 9, 2009

Alignment procedures

• Shown in principle using toy muon Monte Carlo, little in practice

18Monday, March 9, 2009

Fortran or C++?

• C++

19Monday, March 9, 2009

What works really well?

• GDML - We’ve gotten quite a bit of mileage out of this “write once use many
times” approach to the geometry definition.

• Simulation chain seems relatively accessible. With a short list of instructions
new users seem able to produce their own MC samples

• People generally like the XML interfaces for configuration and jobs and the
way its been integrated into the event display

• People generally like the module interface (albeit, mostly in contrast to
MINOS’s equivalent concepts)

• Handling of histogram output:

- FMWK I/O module also handles histogram output

- Histograms automatically booked into their own subdirectory within output
file based on module names (or module/version if module is not unique)

- Accidental overwriting of histogram output prevented

- ctrl-c or HUP signal shuts program down nicely, closing histogram files

20Monday, March 9, 2009

What would we not do again?

• Several false starts with framework (GMINOS/SoCal/FMWK)

• It would be nice if FMWK allowed easier access to the event store from a root
prompt for quick plots of objects stored in the events.

21Monday, March 9, 2009

