Overview of the Fermilab Neutrino Program

Steve Brice PPD Neutrino Department

March 12 2009

Steve Brice

Fermilab

 $\overline{}$

nd Masses	$ \begin{pmatrix} 0 & s_{13} e^{i\delta} \\ 1 & 0 \\ 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} $	3 c Ranges $\Delta m^{2}_{21} : (7.0 - 9.1) \times 10^{-5} eV^{2}$ $TAN^{2}_{012} : 0.34 - 0.62$ $\Delta m^{2}_{32} : (1.9 - 2.98) \times 10^{-3} eV^{2}$ $TAN^{2}_{023} : 0.49 - 2.2$	SIN ² 0 ₁₃ ≤ 0.045 8 unknown Hierarchy unknown m _{lightest} < 2.2 eV Dirac or Majorana unknown [updated from Gonzalez-Garcia PASI 2006]	Fermilab 2
ng Matrix ar	$ \begin{pmatrix} 0 & 0 \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} \\ 0 \\ -s_{13} e^{-i\delta} \end{pmatrix} $	Inverted hierarchy $(m_2)^2$ $dm^2 z_1$ $(m_1)^2$	(m ₃) ² (m ₃) ² (m ₃) ²	Steve Brice
Mixi	$ \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	Normal hierarchy (m ₃) ²	$m^{2}_{lightest}$	March 12 2009

Open Questions in Neutrino Physics
 General Is the picture more complex? MiniBooNE, MicroBooNE MiniBooNE, SciBooNE, MINERVA, MicroBooNE
 12 Sector 23 Sector
 Is 0₂₃ maximal? → MINOS, NOvA 13 Sector
 What is the value of θ₁₃? → NOvA, LBNE How are the mass eigenstates ordered? → NOvA, LBNE Is CP violated? → LBNE
 Mass Mat are the neutrino masses? No plans to
- Are neutrinos their own anti-particles? address at FNAL March 12 2009 Steve Brice Fermilab 3

Fermilab

	SciBooNE Outlook
•	 First Result No evidence for CC coherent pion production found Confirms K2K result, sets stronger limit σCoh/σCC < 0.67x10-2 (90% CL) at 1.1 GeV Also have small higher energy sample σCoh/σCC < 1.36x10-2 (90% CL) at 2.2 GeV
\bullet \bullet \bullet \bullet \bullet $\stackrel{\circ}{\geq}$	Outlook 11 current PhD students Up to 8 new results in the next year Shooting for NuInt09 workshop in most cases Will maintain strong presence at Fermilab until spring 2009 Maintain analysis center at Fermilab for several more years Maintain analysis center at Fermilab for several more years

	MINOS Ne	ear Term C	Dutlook
•	Expect data set of 7 x 10 ²⁰ POT by - This doubles the currently publish	y summer 2009. ed CC sample.	
•	Electron neutrino appearance - First result with 3.25 x 10 ²⁰ POT t - Analysis of doubled dataset to foll	wo weeks ago ow	
•	Neutral currents - Extended analysis of 3.25 x 10 ²⁰ F - Analysis of doubled dataset by en	POT by early 2009 d 2009	
•	Muon Antineutrino disappearance - 3.2 x 10 ²⁰ POT exposure result ne - Using 6% intrinsic beam antineutr	arly completed. Expect I inos	results early 2009.
•	Total cross-section from Near Det - Low model dependence flux deter - Expect end of 2008	ector mination	
•	Request to switch to anti-neutrind	o running after the 20	009 shutdown
\leq	arch 12 2009	Steve Brice	Fermilab 12

MINERvA Physics Program

- Quasi-elastic scattering

- **Generalized Parton Distributions**

4

	MINERVA Pro	posed S	chedule
• •	Continue construction and con Tracking Prototype at WideBar If successful, install in NuMI be	nmissioning nd Hall. eam earlv ii	, with cosmics, of the D CY2009 to check
•	response to neutrino beam. Continue commissioning of ter	tiary test b	eam through end
•	CY2008. Install and commission test be physics runs in CY2009.	eam detecto	r as well as test beam
•	Complete construction of full N stages throughout CY2009, pa	4INERnA de irtial commi	tector and install in ssioning as we install.
•	Begin commissioning of full de	etector towa	rd end of CY2009.
•	Begin physics data taking e	end-CY200	9/beginning-CY2010.
Ma	arch 12 2009 Stev	/e Brice	Fermilab 15

March 12 2009

Steve Brice

How to Measure the 1	3 Sector (cont)
Also probed by measuring electron neu accelerator produced muon neutrinos Need to have an L and E such that inte atmospheric scales can hee seen	trino appearance from ference between solar and
$P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}(\Delta_{31} \mp aL)}{(\Delta_{31} \mp aL)^{2}} \Delta_{31}^{2}$	
+ $\cos^2 \theta_{23} \sin^2 2\theta_{12} \frac{\sin^2(aL)}{(aL)^2} \Delta_{21}^2$	
+ $\cos \delta \sin 2\theta_{23} \sin 2\theta_{12} \sin 2\theta_{13} \cos \Delta_{32} \left(\frac{\sin 2\theta_{13}}{4} \right)$	$\frac{I(\Delta_{31} \mp aL)}{\Delta_{31} \mp aL)} \Delta_{31} \int \left(\frac{\sin(aL)}{(aL)} \Delta_{21} \right)$
$+\sin\delta\sin 2\theta_{23}\sin 2\theta_{12}\sin 2\theta_{13}\sin \Delta_{32}\left(\frac{\sin}{6}\right)$	$\frac{(\Delta_{31} \mp aL)}{\Delta_{31} \mp aL)} \Delta_{31} \left(\frac{\sin(aL)}{(aL)} \Delta_{21} \right)$
$P(\overline{\nu}_{\mu} \to \overline{\nu}_{e}): \sin \delta \to -\sin \delta, a \to -a$	$\Delta_{ij} \equiv 1.27 \Delta m^2 _{ij} L/E$
Matter effect $a \equiv G_F N_e / \sqrt{2} \approx (4000 \text{ km})^{-1}$	L(km), E(GeV), m(eV)
Varch 12 2009 Steve Brice	Fermilab 17

March 12 2009

Fermilab

Steve Brice

March 12 2009

		NOvA Schedu	Jle
	Apr 30 2008 May 29 2008 July 1 2008 Sep 15 2008 Oct 24 2008	Passed Repeat CD-2/3a Re Re-recommended by P5 un Supplemental bill restores \$ CD-2 Granted CD-3a Granted: \$17.3 M fo \$8.9 M for far site prep - ros \$6.2 M for ANU tooling, par \$2.1 M for scintillator wave-	eview nder Scenario B or better \$9.5 M NOvA funding r long-lead items: ad and excavation ts, and instrumentation ts, and instrumentation shifters (single source)
Best estir - A _f - Ju - Au - Au - Ja	nate of schedule: or 2009 un 2011 ug 2012 un 2014	Start of Construction (assum Far Detector Building Benefic 1st 2.5 kT of the Far Detecto Full Far Detector Online	ies FY09 funding final before March 6) cial Occupancy rr Online
March 12 2	600	Steve Brice	Fermilab 23

Neutrino Program Evolution	
 Numerous studies over the past several years have laid out options for further exploring the neutrino sector 	
 In particular, searching for CP violation 	
 i.e. BNL-FNAL US long baseline neutrino experiment study (March 2006-June 2007) explored 	
-Beam options	
–NuMI , <u>new</u> Wide Band Beam at a longer baseline	
-On and off axis detector locations	
-Detector technology options	
 Water cerenkov, liquid argon 	
• These studies make sense in the context of a non-zero determination of θ_{13}	
March 12 2009 Steve Brice Fermilah	_

	General Conclusions
•	Future experiments using <u>conventional</u> * neutrino beams can be designed to have 3-5 σ discovery potential for measuring CP violation and the neutrino mass hierarchy for values of sin ² 2 θ_{13} as low as ~ 0.01
•	These sensitivities are reached assuming : -a proton source at the Megawatt level (or decades of running time)
	 -a neutrino beam optimized to the oscillation probability (covering the 1st and 2nd oscillation maximum) -an experiment baseline > 1000 km (to improve the sensitivity to determine the mass hierarchy) -a Detector with effective mass (mass*efficiency) > 100kT
	If nature has made θ ₁₃ very small we may need to consider a non-conventional neutrino source, i.e. neutrino factory

from P5 report

The Intensity Frontier

The accelerator-based neutrino program

- proposed DUSEL, the Deep Underground Science and science. Such a program will require a multi-megawatt universe. The US can build on the unique capabilities Engineering Laboratory proposed for the Homestake consequences for understanding the evolution of the Mine, to develop a world-leading program in neutrino neutrinos are fundamental to understanding physics Measurements of the mass and other properties of and infrastructure at Fermilab, together with the beyond the Standard Model and have profound proton source at Fermilab.
- The panel recommends a world-class neutrino program as a core component of the US program, with the longterm vision of a large detector in the proposed DUSEI aboratory and a high-intensity neutrino source at Fermilab.

from P5 report

Neutrino Program (cont)

- recommends carrying out R&D on the technology for a The panel recommends proceeding now with an R&D program to design a <u>multi-megawatt proton source</u> at Fermilab and a neutrino beamline to DUSEL and large detector at DUSEL.
- Construction of these facilities could start within the period considered by this report.
- A neutrino program with a multi-megawatt proton source powerful neutrino source. This in turn could position the US program to develop a muon collider as a long-term storage ring, if the science eventually requires a more source, such as a neutrino factory based on a muon would be a stepping stone toward a future neutrino means to return to the energy frontier in the US

Fermilab to Homestake DUSEL (1290km)

March 12 2009

200 200

Fermilab

	Neutrino Beam Requirements*
•	The <u>maximal possible neutrino fluxes</u> to encompass at least the 1st and 2nd oscillation nodes, which occur at 2.4 and 0.8 GeV respectively
•	Since neutrino cross-sections scale with energy, <u>larger fluxes at</u> <u>lower energies</u> are desirable to achieve the physics sensitivities using effects at the 2nd oscillation node
•	To detect $v_{\mu} \rightarrow v_{e}$ at the far detector, it is critical to minimize the neutral-current contamination at lower energy, therefore <u>minimizing the flux</u> of neutrinos with energies <u>greater than 5 GeV</u> where there is little sensitivity to the oscillation parameters is highly desirable
•	The irreducible background to $v_{\mu} \rightarrow v_{e}$ appearance signal comes from beam generated v_{e} events, therefore, a <u>high purity vµ beam</u> with as low as possible ve contamination is required
Mai	*From "Simulation of a Wide-Band Low-Energy Neutrino Beam for Very Long Baseline Neutrino Oscillation Experiments", Bishai, Heim, Lewis, Marino, Viren, Yumiceva ch 12 2009 Cteve Brice Fermilab

25% PMT coverage

60,000 10 inch PMT's per module

Fermilab

Steve Brice

March 12 2009

March 12 2009

Steve Brice

	LBNE Collabo	oration Org	ganisation
•	Several workshops/me	etings	
	-April 24 at Leeu South L -June 20 at FNAL	שאטום	
	-August 14 at FNAL -October 14-15 at BNL		
	-February 26-28 at UC D	avis	
•	Temporary Executive C	ommittee form	hed
•	Formed an Institutional	Board of "inte	erested groups"
•	WC and LAr groups sub solicitation	mitted Propos	als for the NSF S4
•	Working Towards DOE	CD-0	
Ma	Irch 12 2009	Steve Brice	Fermilab 34

		Summary	
•	The last decade has been	revolutionary i	n neutrino physics
•	The next decade promise understanding	s an even more	: rapid development of our
•	The masses and mixings beyond the Standard Moc	are giving us hi Iel	ints of physics well
•	Fermilab has a vibrant cu at the heart of this global	rrent, near terr effort	n, and far term program
Ma	arch 12 2009	Steve Brice	Fermilab 35

Cross-Sections are also being published by the K2K collaboration

