

OPEN SOURCE OR NOT? IT DEPENDS JOHN R CARY TECH-X CORP, U. COLORADO, BOULDER APRIL 23, 2020

 Open versus closed source is a choice to be made on what one is providing and what one would like to have

Scientific software is a continuum of open source, access possibilities

- Open source: one of the approved open source licenses applies to the entire code base
- Open access: downloadable with no registration
- Restricted access: downloadable upon satisfying some requirement (institution, MOU)
- Partially open source

20200423

- Open engine: Interface is closed, engine is open source
- Open core: Core features are open
- Source license: conditions (monetary, other) for access to code base, can modify
- Closed source: access as a binary

Institutions of all kinds provide under all kinds of licenses

When is open/closed source provided?

Institution type?

- ✓ Funding mechanism!
 - Exascale and SciDAC require an open-source license
 - Support of CAD geometry, ease of use, extensive documentation requires commercial revenue

Observed correlation

(FNAL, UCLA, RadiaSoft given opportunity to comment)

20200423

20200423

TECH-X Reasons for using open/closed source are

<u>License type</u>	<u>Comp.</u> <u>engine</u>	<u>Mod.</u> <u>engine</u>	<u>GUI</u>	<u>CAD</u> (healing)	Physics features	<u>Docs</u>	<u>Funding</u>	<u>Reqs</u>
Open source, e.g., WarpX, Synergia, Trilinos, PETSc	•	~	×	×	ask, do	lim	Fed	time
Open core, e.g., OpenFOAM	\checkmark	NA	\$	\$	ask, do		Mix	time
Open engine, e.g., RSim,	\checkmark	~	\checkmark	~	eng do	✓	Mix	t/\$
Restricted access or Source license, e.g., LSP, Osiris, Chicago	•	~	LSP	×	ask, do	?	Fed	t/\$
Closed source, e.g., MARS	\checkmark	~	×	×	ask	?	Fed	?
Closed source comm, CST, VSim, COMSOL,	\checkmark	✓	\checkmark	~	Cust dmnd	✓	Mix	\$

Notional: subject to correction

- Certain codes (MARS, VSim) not available
- Lose multiple approaches
- No longer have codes that can cross check in plasma acceleration, as one example
- No longer available: CAD, ..., delta-f, cut-cell dielectrics (DLA)
- Government pays for everything, no synergistic commercial revenue, which funds new algorithms, geometry, and ease of use

NOTE: only HEP has this open-source requirement. Not present in FES-SciDAC, e.g., which relies on closed-source software for meshing, simulations