
Suggested line of text (optional): 

WE START WITH YES.

April 22, 2020

HPC I/O characterization 
with Darshan

erhtjhtyhy

Shane Snyder
Argonne National Laboratory



Motivation

❖ I/O performance has long been a critical obstacle 
to scientific productivity for HPC apps 

❖ I/O systems have resorted to increasingly 
complex designs to keep up with app I/O needs
➢ Deep stacks of I/O libraries and middleware to optimize 

workloads
➢ Growing storage hierarchies on the backend offering 

conventional (HDD) and emerging (NVM) storage devices

❖ Effective I/O characterization tools can help users 
and system admins navigate this complexity to 
better understand HPC I/O behavior

2



Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

Darshan: An application I/O
characterization tool for HPC



❖ Darshan is a lightweight I/O characterization tool that captures concise views 
of HPC application I/O behavior
➢ Produces a summary of I/O activity for each instrumented job

■ Counters, histograms, timers, & statistics
■ Full I/O traces (if requested)

❖ Widely available
➢ Deployed (and typically enabled by default!) at many HPC facilities relevant to ECP

❖ Easy to use
➢ No code changes required to integrate Darshan instrumentation
➢ Negligible performance impact; just “leave it on”

❖ Modular
➢ Adding instrumentation for new I/O interfaces or storage components is straightforward

What is Darshan?

4



How does Darshan work?

❖ Darshan inserts application I/O instrumentation at link-time (for static 
executables) or at runtime (for dynamic executables)
➢ Darshan instrumentation traditionally only compatible with MPI programs*

❖ As app executes, Darshan records file access statistics for each process
➢ Per-process memory usage is bounded to limit runtime overheads

❖ At app shutdown, collect, aggregate, compress, and write log data
➢ Lean on MPI to reduce shared file records to a single record and to collectively write log data

❖ With a log generated, Darshan offers command line analysis tools for 
inspecting log data
➢ darshan-job-summary - provides a summary PDF characterizing application I/O behavior
➢ darshan-parser - provides complete text-format dump of all counters in a log file

5

* More on this later



How does Darshan work?

❖ Darshan’s modular architecture 
centered around a core library 
and instrumentation modules:
➢ core library: init/finalize library, 

coordinate with modules at runtime, 
reduce/compress/write log file

➢ instrumentation module: captures 
data from some source, typically by 
defining wrappers for I/O functions of 
interest

❖ Self-describing file format to 
index and find data from different 
modules

6



Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

Using Darshan on a production HPC system



Using Darshan on Cori (NERSC)

8

❖ Cori is a Cray XC40 system that has Darshan enabled by default
➢ Darshan has traditionally integrated directly into Cray compiler wrappers using the software 

module system*, as shown below

If Darshan not loaded,
you can load manually using 

‘module load’

Use ‘module list’ to confirm 
Darshan is actually loaded

Darshan 3.1.7 current default 
version available on Cori

* More on this shortly



Using Darshan on Cori (NERSC)

❖ OK, Darshan is loaded...now what?
➢ Just compile and run your application!
➢ Darshan inserts instrumentation directly into executable 

at build time

❖ After the application terminates, look for your 
log files:

9

Darshan logs stored in a central 
directory -- check site 

documentation for details.

Logs further indexed using 
‘year/month/day’ the job 

executed. Pay attention to 
time zones to ensure you’re 

looking in the right spot.

Log file name starts with the 
following pattern: 

‘username_exename_jobid…’



Using Darshan on Cori (NERSC)

❖ Recent modifications to the Cray programming environment have resulted in a 
change in the default linking method from static to dynamic
➢ Darshan integration into Cray compiler wrappers was traditionally specific to statically-linked 

executables
➢ In response to this, we have re-worked our Cray software module to work in both static and 

dynamic linking cases and are working with Cray facilities to update existing deployments

❖ In the meantime, Darshan instrumentation can still be enabled manually at 
runtime using LD_PRELOAD
➢ I.e., ‘export LD_PRELOAD=/path/to/darshan/libdarshan.so’ prior to running the 

application

10



Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

Analyzing Darshan logs



Analyzing Darshan logs

12

❖ After generating and locating your log, use Darshan analysis tools to inspect 
log file data:

Copy the log file somewhere else 
for analysis

Invoke darshan-parser (already 
in PATH on Theta) to get detailed 

counters

Modules use a common format for 
printing counters, indicating the 

corresponding module, rank, 
filename, etc. -- here sample 

counters are shown for both POSIX 
and MPI-IO modules



Analyzing Darshan logs

13

❖ But, darshan-parser output isn’t so accessible for most users… use 
darshan-job-summary tool to produce summary PDF of app I/O behavior

On Theta, texlive module is 
needed for generating PDF 

summaries -- may not be needed 
on other systems

Invoke darshan-job-summary on 
log file to produce PDF

A few simple statistics (total I/O 
time and volume) are output on 

command line

Output PDF file name based on 
Darshan log file name



Analyzing Darshan logs

14

Result is a multi-page PDF 
containing graphs, tables, 

and performance estimates 
characterizing the I/O 

workload of the application

We will summarize some of 
the highlights in the following 

slides



Analyzing Darshan logs

15

PDF header contains some high-level 
information on the job execution

I/O performance estimates (and total I/O 
volumes) provided for MPI-IO/POSIX and 

STDIO interfaces



Analyzing Darshan logs

16

Across main I/O interfaces, how much time was 
spent reading, writing, doing metadata, or 

computing?

If mostly compute, limited opportunities for I/O tuning

What were the relative totals of different I/O 
operations across key interfaces?

Lots of metadata operations (open, stat, seek, 
etc.) could be a sign of poorly performing I/O



Analyzing Darshan logs

17

Histograms of POSIX and MPI-IO access sizes are 
provided to better understand general access 

patterns

In general, larger access sizes perform better with 
most storage systems

Table indicating total number of files of 
different types (opened, created, 

read-only, etc.) recorded by Darshan



Analyzing Darshan logs

18

Darshan can also provide 
basic timing bounds for 

read/write activity, both for 
independent file access 

patterns (illustrated) or for 
shared file access patterns

reads

writes



Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

Detailed I/O traces with DXT



Obtaining fine-grained traces with DXT

❖ Darshan’s DXT module can be enabled at runtime for users wishing to 
capture detailed I/O traces for MPI-IO and POSIX interfaces
➢ Fine-grained trace data comes at cost of larger per-process memory overheads
➢ Set the DXT_ENABLE_IO_TRACE environment variable to enable

❖ darshan-dxt-parser can be then be used to dump text-format trace data:

20



Obtaining fine-grained traces with DXT

❖ dxt_analyzer Python script installed with darshan-util can be used to help 
visualize read/write trace activity:

21

Provides details on each I/O 
operation issued by each rank, 
providing a complete picture of 
which ranks are performing I/O 
and how long they are spending 

on I/O



Suggested closing statement (optional): 

WE START WITH YES.
AND END WITH THANK YOU.

DO YOU HAVE ANY BIG QUESTIONS?

New happenings in Darshan: non-MPI support



Non-MPI instrumentation support

❖ To support an evolving HPC software landscape, 
we have broken Darshan’s dependence on MPI to 
allow instrumentation in new contexts:
➢ non-MPI computing frameworks (e.g., Spark, TensorFlow)
➢ Inter- and intra-site file transfer utilities (e.g., Globus, cp)
➢ General serial applications

❖ This required significant modifications to Darshan:
➢ Build logic for detecting whether a compiler supports MPI
➢ Refactoring of Darshan core functionality to make MPI 

optional
➢ Definition of shared library constructor/destructor attributes 

to handle initialization/shutdown of the Darshan library*

WIP-ish (experimental version available in 3.2.0-pre1)

23

* Side effect: this instrumentation method only 
works for dynamically linked executables

Darshan
instrumentation



Non-MPI instrumentation support
WIP-ish (experimental version available in 3.2.0-pre1)

24

▪ To build Darshan with a non-MPI compiler (e.g., gcc), use the following 
arguments when configuring: ‘--without-mpi CC=gcc’

– Other compilers (e.g., clang, llvm) possible, but gcc is recommended

▪ When running your app, you must set the DARSHAN_ENABLE_NONMPI 
environment variable (in addition to LD_PRELOAD):



Non-MPI instrumentation support
WIP-ish (experimental version available in 3.2.0-pre1)

25

This simple Spark 
example generated a lot 

of logs!



Non-MPI instrumentation support
WIP-ish (experimental version available in 3.2.0-pre1)

26

Focusing analysis on the 
Java executable that does 

all of the I/O for this 
example



Wrapping up

❖ We look forward to using Darshan to help understand I/O characteristics of 
HEP workflows and to help optimize their performance on upcoming HPC 
systems
➢ Let us know how we can help!

❖ Darshan website: https://www.mcs.anl.gov/research/projects/darshan/ 
❖ Darshan-users mailing list: darshan-users@lists.mcs.anl.gov 
❖ Source code, issue tracking: https://xgitlab.cels.anl.gov/darshan/darshan 

27

https://www.mcs.anl.gov/research/projects/darshan/
mailto:darshan-users@lists.mcs.anl.gov
https://xgitlab.cels.anl.gov/darshan/darshan

