

# Synergies with ring-based light sources



#### **Michael Borland**

Jason Carter, Jeff Dooling, Mark Jaski, Ryan Lindberg, Vadim Sajaev

8 May 2020

#### Ring light source challenges are fairly general at root

- Want much lower beam emittance, entailing
  - Shorter, stronger quadrupoles and sextupoles
  - Dipoles with longitudinal or strong transverse gradients
  - Small physical and dynamic acceptance
  - New methods of filling
  - Improved beam stabilization
- Want high average current and few-bunch modes, raising several concerns
  - Interplay of single-particle and collective dynamics
  - Single- and multi-bunch instabilities
  - Rf heating and synchrotron radiation masking
  - Machine protection
- Both lead to shorter lifetime and more frequent injection, motivating
  - More precision in lifetime and injection efficiency predictions
  - Bunch lengthening and emittance sharing
  - Detail in loss prediction and localization



#### Many factors contributed to success of 3GSRs

- Maturity of design tools and reliability of accelerator hardware
- Lattice correction [1] reduced lattice errors to ~1% rms, improving lifetime and injection efficiency
- Top-up operation [2] increased tolerance for short lifetime from lower emittance, few-bunch modes
- Tracking-based optimization increased lifetime up to 25% [3], nearly eliminates impact of symmetry breaking, high chromaticity [4]
- In-vacuum [5], cryogenic [6], and superconducting [7,8] undulators gave strong fields with shorter periods, hence higher brightness
- Improvements in fast orbit correction, gave ~100 Hz closed-loop BW [9]

```
1: J. Safranek, NIM A 388, 27-36 (1997).
```



<sup>2:</sup> L. Emery et al., PAC99, 200; L,. Emery et al, EPAC02, 218.

<sup>3:</sup> M. Borland et al., ICAP09, 256.

<sup>4:</sup> Y-P Sun (APS), private communication.

<sup>5:</sup> T. Hara et al., J. Sync. Rad. 5, 403 (1998).

<sup>6:</sup> T. Hara et al., PRSTAB 7 (2004), 050702.

<sup>7:</sup> S. Casalbuoni et al., AIP Conf. Proc. 1741 (2016), 020002.

<sup>8:</sup> E. Gluskin et al., SRN 28 (3), 4 (2015).

<sup>9:</sup> J. Carwardine et al., PAC97, 2281.

# Three groups apparent in 3<sup>rd</sup> and 4<sup>th</sup> generation rings



Legend: blue circles are in operation, red circles and blue diamonds are under study or construction.



#### Two popular approaches to injection in 3GSRs



Closed-bump accumulation, giving no residual stored-beam oscillation. Aperture must accommodate large oscillation and emittance of injected beam.

Shared-disturbance accumulation, reduces required aperture ~2-fold, may worsen charge-dependence of injection efficiency.

Swap-out injection<sup>1,2</sup> uses fast kickers to replace depleted bunches or bunch trains. Aperture requirements set by incoming emittance only.

1: R. Abela et al, EPAC 92, 486.

2: L. Emery et al., PAC03, 256.



#### **APS Upgrade project building 4GSR at Argonne**

- Entirely new 6-GeV, 200-mA ring, including
  - Reduction of emittance from 3200 to 41 pm
  - 1104 m of vacuum systems
  - 1320+ high-strength conventional magnets
  - 2243 power supplies, many with 10 ppm regulation
  - Superconducting insertion devices
  - Orbit correction system with 1 kHz bandwidth
  - Injector upgrades for high-charge swap-out
- Will exceed capabilities of 3GSRs by 2 to 3 orders of magnitude



Advanced Photon Source (APS)





#### APS-U optimization directly targets key performance metrics<sup>1,2</sup>

Parallel, multi-objective genetic algorithms<sup>3,4</sup> for linear and nonlinear dynamics

optimization

Uses parallel version of elegant<sup>5,6</sup>

- Breeds new solutions to find best
  - Dynamic acceptance
  - Touschek lifetime from local momentum acceptance
  - Momentum tune footprint
  - X-ray brightness
- Validated with present-day APS, other rings
- 5GSR challenges:
  - Based on lumped-element models, which may be inadequate or inappropriate
  - Methods based on field maps, generalized gradients<sup>7</sup>, etc., difficult to apply with confidence even to 4GSRs



# Example of DA and Touschek lifetime optimization for an early APS-U design

- 1: M. Borland et al., ANL/APS/LS-319 (2010).
- 2: M. Borland et al., ICAP09. THPsc009 (2009).
- 3: N. Srinivas et al., Evol. Computing 2, 221-248 (1995).
- 4: I. Bazarov et al., PRSTAB 8, 034202 (2005).
- 5: M. Borland, ANL/APS/LS-287 (2000).
- 6: Y. Wang et al., AIP Conf. Prooc. 877, 241 (2006).
- 7: M. Venturini et al., NIM A 427, 387.



#### Automated commissioning simulation has many benefits<sup>1,2</sup>

- Procedure made as realistic as reasonably possible by including
  - Alignment strategy (supports, survey, magnet groups)
  - Error generation, field-quality errors
  - Trajectory threading transitioning to orbit correction
  - Beta function and coupling correction
- Provides statistical distributions of basic quantities and "ensembles" of errors and corrections
- Defines many requirements for magnet measurement, power supplies, diagnostics, correctors, alignment
- 5GSR challenges:
  - Diagnostics must get progressively better, e.g., small BPM offsets, increased BPM sensitivity, reliable loss localization

rms  $\Delta\beta/\beta$  (%)

V. Sajaev

<sup>2:</sup> V. Sajaev PRAB 22, 040102 (2019).



X emittance requencyNorm-0.8 0.2 0.0 41.6 41.8 42.0 42.2 42.4 42.6 Emittance (pm) 0.8 betax 0.6 betay 0.4 0.2 0.0 .2 1.4 1.6 1.8 2.0 2.2

<sup>1:</sup> V. Sajaev et al., IPAC15, 553.

#### Large-scale simulations confirm robustness of lattice

- Commissioning simulation gives 100+ ensembles of errors and corrections
  - More representative of possible machines than alternative methods
- Use with tracking-based simulations to give distributions of possible performance







- Use of parallel code (elegant in our case) is essential
- 5GSR challenge again is the underlying simulation method



#### Direct simulation of loss mechanisms has many benefits





Touschek scattering loss distribution<sup>1</sup>



Gas-scattering loss distribution<sup>2</sup>



- Direct simulation of loss mechanisms provides several benefits
  - Assessment and tuning of collimation strategy
  - Prediction of loss distribution for use in shielding analysis<sup>3</sup> with MCNP<sup>4</sup>
  - Confirmation of lifetime and injection efficiency expectations
- 5GSR challenge again is the underlying simulation method



<sup>1:</sup> A. Xiao et al., PRSTAB 13, 074201 (2010).

<sup>2:</sup> M. Borland, NAPAC19, WEPLE08 (2019).

<sup>3:</sup> B. Micklich et al., AccApp 2017,52.

<sup>4:</sup> C. J. Werner et al., LANL LA-UR-18-20808 (2018).

## Combining single- and multi-bunch effects yields insights

- Microwave and transverse instability thresholds<sup>1</sup>
- Determination of bunch-by-bunch feedback requirements including Higher Harmonic Cavity<sup>2</sup>
  - Synchrotron tune suppression overwhelms benefit of Landau damping
  - Energy-sensing pickup highly favored
- Touschek lifetime vs passive HHC detuning<sup>3</sup>, with gaps<sup>4</sup>
  - Overstretching helps, up to a point
- Injection transients when filling from zero<sup>5,6</sup>
  - Fill in stages to avoid beam losses
  - Ensure that tune shift with amplitude not too low
  - Use on-axis injection to minimize centroid motion
- Challenges
  - Sufficient spatial resolution to get high-frequency impedance for long structures
  - Strict correspondence between what's designed and what's built
  - Including real-world noise and spurious signals in feedback simulations



Microwave unstable beam (HHC fully detuned) 00 50 -100100  $\Delta t (ps)$ (H) Median 10th perc. 200 mA in 324 bunches Touschek without gaps 10 7 8 9  $\Delta f_{k}$  (kHz)

<sup>1:</sup> R. Lindberg et al., IPAC15, 1822. 2: L. Emery et al., 3: A. Xiao et al., PAC09, 3281

<sup>4:</sup> J. Calvey et al., PRAB 22, 114403. 5: M. Borland et al., ICAP15, 61.

<sup>6:</sup> R. Lindberg et al., NAPAC16, 901.

#### 4GSR beams are destructive

- Even in APS today, beam dumps are damaged by beam strikes<sup>1</sup>
- In APS-U, problem for swap-out and whole-beam dumps
- Several approaches to solving this
  - Decoherence kicker<sup>2</sup>, if time permits
  - Sacrificial surfaces for unplanned aborts
  - Unpopular materials (graphite, beryllium)
  - Solid xenon dump³

#### Challenges

- Control of rf heating in a complex dump geometry or cryogenic materials
- Need a code suite that couples beam dynamics, beam-matter interaction, and material evolution
  - ANL is working on this with elegant, MARS<sup>4</sup>, and FLASH<sup>5</sup>, but underfunded



Experiment in APS, Feb. 2020 at approximate APS-U conditions, Al-6061 target.



<sup>1:</sup> J. C. Dooling et al., PAC13, 1361.

<sup>2:</sup> M. Borland et al., IPAC18, 1494.

<sup>3:</sup> M. Borland et al., NAPAC19,

<sup>4:</sup> N. Mokhov et al. Fermilab-Conf-07/008-AD (2007).

<sup>5:</sup> http://flash.uchicago.edu

#### SR masking is critical for high-current electron rings

- Strong bends, narrow apertures, and high beam current imply high power density on APS-U chambers<sup>1</sup>
- 3D ray tracing performed using several methods
  - SynRad<sup>2</sup> from CERN
  - 3D MATLAB: explore missteering, verify 'perfect steering' case from SynRad
- Masking strategy also evaluated for beam impedance effects
- 5GSR challenge: even smaller apertures, brighter beams

1: J. A. Carter et al., MEDSI 18, 312. 2: R. B. Kersevan et al., PAC93, 3848.





## Coupling vacuum and physics modeling is important

- Vacuum pressure analysis with MolFlow<sup>1</sup> provides species-specific pressure profiles
  - Based on measured photon-stimulated desorption data coupled with SR distribution from SynRad
- Pressure profiles<sup>2</sup> shared with physics team, allowing computation of
  - Gas scattering lifetime and loss distribution
  - lon instabilities<sup>3</sup>
  - Conditioning schedule
- Coupled analysis led to conclusion that more widespread NEG coating was needed to suppress PSD in regions with large lattice functions
- 5GSR challenge: need much lower pressure



Configuration with wider application of NEG provides >2-fold increase in gas scattering lifetime



<sup>1:</sup> M. Ady et al., IPAC14, 2344. 2: J. A. Carter et al., MEDSI 18, 30. 3: J. Calvey et al., PRAB **22**, 114403.

## APS-U requires 15 magnet types, 33 magnets/sector

- Variety and strength of magnet designs is remarkable, e.g.,
  - Dipoles with 5-segment longitudinal field variation
  - Gradients up to 97 T/m
  - Sextupole strength up to 6000 T/m²
- 3D magnet designs developed with OPERA<sup>1</sup>
  - Iterative process with lattice design using parametric models
  - 3D field maps, generalized gradient expansions<sup>2</sup> imported into *elegant* to validate designs<sup>3</sup>
  - OPERA used to assess cross-talk of closely-spaced magnets



Rays tracked through 5-segment dipole field map

- 1: operafea.com
- 2: M. Venturini et al., NIM A 427, 387.
- 3: M. Borland et al., NAPAC16, 1119.





# Now is the time to plan for 5<sup>th</sup> generation rings

- First 4<sup>th</sup>-generation design was published in 1996 [1]
- "Ultimate" ring would have <1-pm emittance, diffraction-limited at ~100 keV</li>
- Conceivable with, e.g., 21 dipoles per cell instead of the 7 in APS-U
- What's needed for M=7 → M=21 (see [2] for scaling behavior)
  - Higher focusing gradients ~600 T/m with ~1.5mm bore radius
  - Higher sextupole strength ~160 kT/m², with ~2.5mm bore radius
  - Alignment precision of ~2 μm, or individual movers for all magnets
  - Low-emittance recycler ring to prepare and reclaim bunches for ring
  - Accumulator ring to prepare beams from injector for the recycler ring
  - Superconducting vacuum chamber to reduce resistive wall impedance
  - ~100-fold reduction in vacuum pressure to improve lifetime with small acceptance
  - New ideas for optimizing nonlinear dynamics
  - 3D magnet code with higher resolution, faster execution, perhaps coupled directly to tracking code
  - Confident prediction of nonlinear dynamics, lifetime, collective effects, etc.
- The necessary knowledge might not be gained incrementally from 4GSRs

<sup>2:</sup> M. Borland et al., J. Synch. Rad 21, 912-936 (2014).



From naive scaling of present

conventional magnets

<sup>1:</sup> D. Einfeld et al., EPAC96, WEP038G.