Spontaneous R-parity Violation in Supersymmetry

Sogee Spinner
Phenomenology Institute, University of Wisconsin, Madison

May 22, 2009

Collider Physics 2009: Joint Argonne and IIT Theory Institute
My collaborators:

- Vernon Barger
- Pavel Fileviez Pérez
- Gabe Shaughnessy
1. Introduction: SUSY and R-parity

2. $B - L$ and R-parity
 - Spectrum
 - Pheno

3. Left-Right models and R-parity
 - Spectrum

4. Conclusion
Outline

1. Introduction: SUSY and R-parity

2. $B - L$ and R-parity
 - Spectrum
 - Pheno

3. Left-Right models and R-parity
 - Spectrum

4. Conclusion
Several reasons to consider beyond the standard model physics:

- Neutrino masses, experimentally verified.
- A Dark matter candidate.
- A resolution to the gauge hierarchy problem.
- ...
Neutrino oscillation data indicates neutrinos are light, but massive.

Two possible mass terms for neutrinos:

- **Dirac**: \(m_D \, \nu_L \nu_R \)
- **Majorana**: \(m \, \nu_L \nu_L \)

But the SM:

- does not contain right-handed neutrinos \(\nu_R \),
- Might allow: \(\mathcal{L} \supset \frac{LH \, LH}{M} \sim \frac{v^2}{M} \nu_L \nu_L \); breaks the accidental \(U(1)_{B-L} \)

A theory that addresses neutrino masses should motivate \(\nu_R \) or \(M \).
Supersymmetry

SUSY can provide an elegant solution to the gauge hierarchy problem.

- Action invariant under Fermions \leftrightarrow Bosons.
- Doubles the particle content, ψ_f gets a partner ϕ_f:
 \[\mathcal{L} \supset Y \bar{\psi}_f \psi_f H + \lambda^2 H^2 \phi_f^2 \]
- Invariance $\Rightarrow Y = \lambda$.
- Stabilizes Higgs Mass:

\[- \frac{2}{16\pi^2} Y^2 \Lambda^2_{UV} \]

Opposite signs cancel stabilizing the Higgs mass
The minimal supersymmetric standard model (MSSM):

\[W_{\text{MSSM}} = y_u QH_u u^c + y_d QH_d d^c + y_e LH_d e^c + \mu H_u H_d \]

- Yukawa terms: \(\psi_i \psi_j \frac{\partial W^2}{\partial \Phi_i \partial \Phi_j} \).
- Also have gauge strength Yukawa terms: \(g_1 \tilde{e}^c e^c \tilde{B} \)

Potential = \(|F_i|^2 + \frac{1}{2} D^2_a + V_{\text{SUSY Breaking}} \)

- \(-F^*_\phi_i = \frac{\partial W}{\partial \phi_i}\);
- \(D_a = -g_a \phi^*_i T^{ij} \phi_j\)
- \(V_{\text{SUSY Breaking}} \supset m^2_{H_u}|H_u|^2 + m^2_\tilde{Q}|\tilde{Q}|^2 + \ldots\)

\[\frac{\langle H_u \rangle}{\langle H_d \rangle} = \frac{v_u}{v_d} = \tan \beta, \quad v^2_u + v^2_d = 246^2 \text{ GeV}^2. \]
Unlike the SM, the MSSM does not have an accidental $U(1)_{B-L}$:

$$W_L = \frac{1}{2} \chi_{ij}^k L^i L^j e_k^c + \chi_{ij}^k L^i Q^j d_k^c + \mu_i L^i H_u$$

$$W_{\bar{B}} = \lambda^{ijk} u_i^c d_j^c d_k^c$$

- Including soft terms, there are 96 new parameters.
 - Allow for Majorana neutrino masses.
 - Introduces new, unobserved, processes.
Proton decay places the most stringent bounds on these interactions:

\[\tau_p > 10^{32} \text{ years so } |\lambda'\lambda''| < 10^{-26} \]
Proton decay places the most stringent bounds on these interactions:

\[\tau_p > 10^{32} \text{ years so } |\lambda' \lambda''| < 10^{-26} \]
Introduction: SUSY and R-parity

R-Parity

Introduce a multiplicative discrete symmetry: R-parity.

\[P_R = (-1)^{3(B-L)+2s} \]

- Examine general Yukawa coupling:

\[
\begin{array}{ccc|ccc}
\psi^c & \psi & \phi & \psi^c & \psi & \phi \\
(-1)^{2s} & -1 & -1 & 1 & 1 \\
\end{array}
\]

- \((-1)^{3(B-L)}\) separately conserved: \(B - L\) conservation.

Furthermore: \(P_R(\text{particles}) = 1\) \hspace{1cm} \(P_R(\text{sparticles}) = -1\)

- The LSP is stable and a dark matter candidate.

- Sparticles are produced in pairs at colliders. Cascade decay into the LSP, which escapes the detector as missing energy.
Pheno Studies

\[\tau_p \sim |\lambda'\lambda''| \rightarrow \text{studies of: } \lambda'' = 0 \]

- Trilinear RPV: \(\lambda, \lambda' \lesssim 10^{-2} \).
- Bilinear RPV: \(W = \mu'_i L_i H_u; \mu' \lesssim 10^{-3} \text{ GeV} \)

But why R-parity?

- Many new parameters - not predictive.
- Is there a mechanism?

Remember the connection to matter Parity

\[P_M = (-1)^{3(B-L)}. \]

Hints at a connection to \(B - L \) symmetries.
Pheno Studies

\(\tau_p \sim |\lambda' \lambda''| \rightarrow \) studies of: \(\lambda'' = 0 \)

- Trilinear RPV: \(\lambda, \lambda' \lesssim 10^{-2} \).

- Bilinear RPV: \(W = \mu'_i L_i H_u; \mu' \lesssim 10^{-3} \) GeV

But why R-parity?

- Many new parameters - not predictive.

- Is there a mechanism?

Remember the connection to matter Parity

\[
P_M = (-1)^{3(B-L)}.
\]

Hints at a connection to \(B - L \) symmetries.
$\tau_p \sim |\lambda' \lambda''| \rightarrow \text{studies of: } \lambda'' = 0$

- Trilinear RPV: $\lambda, \lambda' \lesssim 10^{-2}$.
- Bilinear RPV: $W = \mu'_i L_i H_u; \mu' \lesssim 10^{-3} \text{ GeV}$

But why R-parity?

- Many new parameters - not predictive.
- Is there a mechanism?

Remember the connection to matter Parity

$$P_M = (-1)^{3(B-L)}.$$

Hints at a connection to $B - L$ symmetries.
Global $B - L$

Early models: MSSM with a global $U(1)_{B-L}$ (Aulakh and Mohapatra 1982).

Broken by $\langle \tilde{\nu} \rangle \neq 0$.

- The Majoron (J) is the Goldstone associated with breaking $B - L$.
- The CP-even partner is σ, $m_\sigma \lesssim 300$KeV

Ruled out by invisible Z decay from LEP II $Z \rightarrow J + \sigma$.

- Introduce N, S and 3 ν^c with $L = (0, 1, -1)$ (Masiero and Valle 1990)

$$\Delta W = y_\nu L H_u \nu^c + y_N \nu^c S$$

- Now the Majoron is mostly singlet (ν^c and S) so very little Z coupling.
Several issues:

- Singlets and ν^c are not motivated
- Replaced a discrete symmetry with a continuous one.
- Have to deal with the Majoron.

Gauging B-L addresses all these issues:

- Right-handed neutrinos are necessary for anomaly cancellation.
- A local symmetry is more aesthetic.
- The Majoron is eaten and is no longer physical.
Several issues:
- Singlets and ν^c are not motivated
- Replaced a discrete symmetry with a continuous one.
- Have to deal with the Majoron.

Gauging B-L addresses all these issues:
- Right-handed neutrinos are necessary for anomaly cancellation.
- A local symmetry is more aesthetic.
- The Majoron is eaten and is no longer physical.
Outline

1. Introduction: SUSY and R-parity

2. $B - L$ and R-parity
 - Spectrum
 - Pheno

3. Left-Right models and R-parity
 - Spectrum

4. Conclusion
Simple MSSM extension: $SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$W = W_{MSSM} + Y_\nu L^T i\sigma_2 H_u \nu^c$$

$$\langle \tilde{L} \rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} v_L \\ 0 \end{pmatrix} \quad \langle \tilde{\nu}^c \rangle = \frac{1}{\sqrt{2}} v_R$$

$$\langle V_F \rangle = \frac{1}{4} Y_\nu^2 (v_R^2 v_u^2 + v_R^2 v_L^2 + v_L^2 v_u^2) + \frac{1}{2} \mu^2 (v_u^2 + v_d^2) + \frac{1}{\sqrt{2}} Y_\nu \mu v_L v_d v_R$$

$$\langle V_D \rangle = \frac{1}{32} \left[g_2^2 (v_u^2 - v_d^2 - v_L^2)^2 + g_1^2 (v_u^2 - v_d^2 - v_L^2)^2 + g_{BL}^2 (v_R^2 - v_L^2)^2 \right]$$

$$\langle V_S \rangle = \frac{1}{2} m_{\nu R}^2 v_L^2 + \frac{1}{2} m_{\nu c}^2 v_R^2 + \frac{1}{2} m_{H_u}^2 v_u^2 + \frac{1}{2} m_{H_d}^2 v_d^2 - 2b v_u v_d - \frac{1}{\sqrt{2}} a_L v_u v_L v_R$$
R-parity Through Local $B - L$

Simple MSSM extension: $SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$W = W_{MSSM} + Y_\nu \; L^T \; i\sigma_2 \; H_u \; \nu^c$$

$$\langle \tilde{L} \rangle = \left(\frac{1}{\sqrt{2}} v_L \right) \quad \langle \tilde{\nu}^c \rangle = \frac{1}{\sqrt{2}} v_R$$

$$\langle V_F \rangle = \frac{1}{4} Y_\nu^2 \left(v_R^2 v_u^2 + v_R^2 v_L^2 + v_L^2 v_u^2 \right) + \frac{1}{2} \mu^2 \left(v_u^2 + v_d^2 \right) + \frac{1}{\sqrt{2}} Y_\nu \; \mu v_L v_d v_R$$

$$\langle V_D \rangle = \frac{1}{32} \left[g_2^2 \left(v_u^2 - v_d^2 - v_L^2 \right)^2 + g_1^2 \left(v_u^2 - v_d^2 - v_L^2 \right)^2 + g_{BL}^2 \left(v_R^2 - v_L^2 \right)^2 \right]$$

$$\langle V_S \rangle = \frac{1}{2} m_L^2 v_L^2 + \frac{1}{2} m_{\tilde{\nu}^c}^2 v_R^2 + \frac{1}{2} m_{H_u}^2 v_u^2 + \frac{1}{2} m_{H_d}^2 v_d^2 - 2 b v_u v_d - \frac{1}{\sqrt{2}} a_L \; v_u v_L v_R$$
R-parity Through Local $B - L$

Simple MSSM extension: $SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$W = W_{\text{MSSM}} + Y_\nu L^T i\sigma_2 H_u \nu^c$$

$$\langle \tilde{L} \rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} v_L \\ 0 \end{pmatrix} \quad \quad \langle \tilde{\nu}^c \rangle = \frac{1}{\sqrt{2}} v_R$$

$$\langle V_F \rangle = \frac{1}{4} Y_\nu^2 (v_R^2 v_u^2 + v_R^2 v_L^2 + v_L^2 v_u^2) + \frac{1}{2} \mu^2 (v_u^2 + v_d^2) + \frac{1}{\sqrt{2}} Y_{\nu} \mu v_L v_d v_R$$

$$\langle V_D \rangle = \frac{1}{32} \left[g_2^2 (v_u^2 - v_d^2 - v_L^2)^2 + g_1^2 (v_u^2 - v_d^2 - v_L^2)^2 + g_{BL}^2 (v_R^2 - v_L^2)^2 \right]$$

$$\langle V_S \rangle = \frac{1}{2} m_L^2 v_L^2 + \frac{1}{2} m_{\tilde{\nu}^c}^2 v_R^2 + \frac{1}{2} m_{H_u}^2 v_u^2 + \frac{1}{2} m_{H_d}^2 v_d^2 - 2b v_u v_d - \frac{1}{\sqrt{2}} a_L v_u v_L v_R$$
For $v_R \gg v_u, v_d \gg v_L$

$$v_R = \sqrt{-\frac{8m_{\tilde{\nu}c}}{g_{BL}^2}}$$

$$v_L = \frac{(y_{\nu \mu}v_d - a_{\nu}v_u)v_R}{\sqrt{2} \left(m_L^2 - \frac{1}{8} g_{BL}^2 v_R^2 \right)}$$

v_u and v_d as in the MSSM
But R-Parity Violation Can Be Scary!
But R-Parity Violation Can Be Scary!
But R-Parity Violation Can Be Scary!

Lepton number violation?
But R-Parity Violation Can Be Scary!

Lepton number violation?

Dark Matter?

RPV

p
But R-Parity Violation Can Be Scary!

- Lepton number violation?
- Dark Matter?
- Proton decay?!
Not Necessarily
No proton decay: Baryon num. conserved, $\chi'' = 0$.
No proton decay: Baryon num. conserved, $\lambda'' = 0$.

Lepton num. is safe: λ, λ' suppressed by ν masses.
Not Necessarily

No proton decay: Baryon num. conserved, $\lambda'' = 0$.

Lepton num. is safe: λ, λ' suppressed by ν masses.

Dark matter candidate: Long-lived gravitino LSP.
Not Necessarily

No proton decay: Baryon num. conserved, $\lambda'' = 0$.

Lepton num. is safe: λ, λ' suppressed by ν masses.

Dark matter candidate: Long-lived gravitino LSP.

Less free parameters: spontaneous not explicit.
The pros

Plus

- **Minimal**: particle content = MSSM + anomaly cancellation.
- **Predictive**: no singlets, no vector-like pairs; $M_{B-L} = m_{SUSY}$.
- **Neutrino Masses**: at tree level.
- **Testable**: Relationship between Z' and R-parity violation.
The pros

Plus

- **Minimal**: particle content = MSSM + anomaly cancellation.
- **Predictive**: no singlets, no vector-like pairs; $M_{B-L} = m_{SUSY}$.
- **Neutrino Masses**: at tree level.
- **Testable**: Relationship between Z' and R-parity violation.
The pros

Plus

- **Minimal**: particle content = MSSM + anomaly cancellation.
- **Predictive**: no singlets, no vector-like pairs; $M_{B-L} = m_{SUSY}$.
- **Neutrino Masses**: at tree level.
- **Testable**: Relationship between Z' and R-parity violation.
The pros

Plus

- **Minimal**: particle content = MSSM + anomaly cancellation.
- **Predictive**: no singlets, no vector-like pairs; $M_{B-L} = m_{SUSY}$.
- **Neutrino Masses**: at tree level.
- **Testable**: Relationship between Z' and R-parity violation.
The pros

Plus

- **Minimal**: particle content = MSSM + anomaly cancellation.
- **Predictive**: no singlets, no vector-like pairs; $M_{B-L} = m_{SUSY}$.
- **Neutrino Masses**: at tree level.
- **Testable**: Relationship between Z' and R-parity violation.
R-parity conservation vs. R-parity violation

<table>
<thead>
<tr>
<th>R-parity conservation</th>
<th>R-parity violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields:</td>
<td>X, (\bar{X}, \nu^c)</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td>(</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Fields:</td>
<td>X, (\bar{X}, S, \nu^c)</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td>(S (X \bar{X} - M^2)); (M_{B-L} = ?)</td>
</tr>
</tbody>
</table>
Compare to R-parity conserving models

<table>
<thead>
<tr>
<th>R-parity conservation</th>
<th>R-parity violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, ν^c</td>
<td>ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\mu_X</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, S, ν^c</td>
<td>ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$S \left(X\bar{X} - M^2 \right); M_{B-L} = ?$</td>
<td>$M_{B-L} = m_{susy}$</td>
</tr>
</tbody>
</table>
Compare to R-parity conserving models

<table>
<thead>
<tr>
<th>R-parity conservation</th>
<th>R-parity violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields:</td>
<td>X, \bar{X}, ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td>$</td>
</tr>
<tr>
<td>or</td>
<td>$S (X\bar{X} - M^2)$; $M_{B-L} =$?</td>
</tr>
<tr>
<td>Fields:</td>
<td>X, \bar{X}, S, ν^c</td>
</tr>
<tr>
<td>R-parity conservation</td>
<td>R-parity violation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Fields:</td>
<td>X, \bar{X}, ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td>$</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Fields:</td>
<td>X, \bar{X}, S, ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td>$S \left(X\bar{X} - M^2 \right); M_{B-L} = ?$</td>
</tr>
</tbody>
</table>
Compare to R-parity conserving models

<table>
<thead>
<tr>
<th>R-parity conservation</th>
<th>R-parity violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, ν^c</td>
<td>ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\mu_X</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, S, ν^c</td>
<td>ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$S (X\bar{X} - M^2); M_{B-L} =$?</td>
<td>$M_{B-L} = m_{\text{susy}}$</td>
</tr>
</tbody>
</table>
Compare to R-parity conserving models

<table>
<thead>
<tr>
<th>R-parity conservation</th>
<th>R-parity violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, ν^c</td>
<td>ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\mu_X</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, S, ν^c</td>
<td>ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$S (X\bar{X} - M^2); \ M_{B-L} = ?$</td>
<td>$M_{B-L} = m_{susy}$</td>
</tr>
</tbody>
</table>
Compare to R-parity conserving models

<table>
<thead>
<tr>
<th>R-parity conservation</th>
<th>R-parity violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields:</td>
<td>X, \bar{X}, ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td>$</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Fields:</td>
<td>X, \bar{X}, S, ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td>$S \left(X\bar{X} - M^2 \right); M_{B-L} = ?$</td>
</tr>
</tbody>
</table>
Compare to R-parity conserving models

<table>
<thead>
<tr>
<th>R-parity conservation</th>
<th>R-parity violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields:</td>
<td>X, \bar{X}, ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td>$</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Fields:</td>
<td>X, \bar{X}, S, ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td>$S (X \bar{X} - M^2); M_{B-L} = ?$</td>
</tr>
</tbody>
</table>
R-parity conservation

<table>
<thead>
<tr>
<th>Fields:</th>
<th>X, \bar{X}, ν^c</th>
</tr>
</thead>
</table>

Breaking B-L: $|\mu_X|^2 + m_X^2 < 0$ new μ problem

R-parity violation

<table>
<thead>
<tr>
<th>Fields:</th>
<th>ν^c</th>
</tr>
</thead>
</table>

Breaking B-L: $m_{\nu^c}^2 < 0$

or

<table>
<thead>
<tr>
<th>Fields:</th>
<th>X, \bar{X}, S, ν^c</th>
</tr>
</thead>
</table>

Breaking B-L: $S (X \bar{X} - M^2); M_{B-L} = ?$

$M_{B-L} = m_{\text{susy}}$
Compare to R-parity conserving models

<table>
<thead>
<tr>
<th>R-parity conservation</th>
<th>R-parity violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, ν^c</td>
<td>ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\mu_X</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, S, ν^c</td>
<td></td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$S (X\bar{X} - M^2); M_{B-L} = ?$</td>
<td>$M_{B-L} = m_{susy}$</td>
</tr>
</tbody>
</table>
Compare to R-parity conserving models

<table>
<thead>
<tr>
<th>R-parity conservation</th>
<th>R-parity violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, ν^c</td>
<td>ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\mu_X</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, S, ν^c</td>
<td>ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$S(X\bar{X} - M^2); M_{B-L} =$?</td>
<td>$M_{B-L} = m_{\text{susy}}$</td>
</tr>
</tbody>
</table>
Compare to R-parity conserving models

<table>
<thead>
<tr>
<th>R-parity conservation</th>
<th>R-parity violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, ν^c</td>
<td>ν^c</td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\mu_X</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Fields:</td>
<td></td>
</tr>
<tr>
<td>X, \bar{X}, S, ν^c</td>
<td></td>
</tr>
<tr>
<td>Breaking B-L:</td>
<td></td>
</tr>
<tr>
<td>$S(X\bar{X} - M^2); M_{B-L} = ?$</td>
<td>$M_{B-L} = m_{susy}$</td>
</tr>
</tbody>
</table>
Boson Masses

Gauge boson mass

\[M_{Z'}^2 = \frac{1}{4} g_{BL}^2 v_R^2 : \quad \frac{M_{Z'}}{g_{BL}} > 5 \text{ TeV}; \quad v_R \gtrsim 10 \text{ TeV} \]

Higgs masses as in MSSM (no \(B - L \) charge). Using \(v_L, y_\nu, a_\nu \rightarrow 0 \):

- **Neutral sleptons**
 - \(\text{Im} \tilde{\nu}^c \): The \(B - L \) goldstone boson
 - \(\text{Re} \nu^c \): \(m_{H_\nu}^2 = \frac{1}{4} g_{BL} v_R^2 = M_{Z'}^2 \)

\[m_{\tilde{\nu}}^2 = m_L^2 - \frac{1}{8} g_{BL}^2 v_R^2 - \frac{1}{8} (g_1^2 + g_2^2) (v_u^2 - v_d^2) \]

- **Charged sleptons**

\[m_{\tilde{e}_L}^2 = m_L^2 - \frac{1}{8} g_{BL}^2 v_R^2 + \frac{1}{8} (g_2^2 - g_1^2) (v_u^2 - v_d^2) \]

\[m_{\tilde{e}_R}^2 = m_{\tilde{e}_c}^2 + \frac{1}{8} g_{BL}^2 v_R^2 + \frac{1}{4} g_1^2 (v_u^2 - v_d^2) \]
Neutrino Masses

Basis: \((\nu, \nu^c, \tilde{B}', \tilde{B}, \tilde{W}_L, \tilde{H}_d^0, \tilde{H}_u^0)\)

\[
\begin{pmatrix}
0 & -\frac{1}{\sqrt{2}} y_\nu v_u & -\frac{1}{2} g_{BL} v_L & -\frac{1}{2} g_1 v_L & \frac{1}{2} g_2 v_L & 0 & \frac{1}{\sqrt{2}} y_\nu v_R \\
-\frac{1}{\sqrt{2}} y_\nu v_u & 0 & \frac{1}{2} g_{BL} v_R & 0 & 0 & 0 & \frac{1}{\sqrt{2}} y_\nu v_L \\
-\frac{1}{2} g_{BL} v_L & \frac{1}{2} g_{BL} v_R & M_{BL} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} g_1 v_L & 0 & 0 & M_1 & 0 & -\frac{1}{2} g_1 v_d & \frac{1}{2} g_1 v_u \\
\frac{1}{2} g_2 v_L & 0 & 0 & 0 & M_2 & \frac{1}{2} g_2 v_d & -\frac{1}{2} g_2 v_u \\
0 & 0 & 0 & -\frac{1}{2} g_1 v_d & \frac{1}{2} g_2 v_d & 0 & -\mu \\
\frac{1}{\sqrt{2}} y_\nu v_R & \frac{1}{\sqrt{2}} y_\nu v_L & 0 & \frac{1}{2} g_1 v_u & -\frac{1}{2} g_2 v_u & -\mu & 0
\end{pmatrix}
\]

Complicated; two helpful limits:

- \(y_\nu \rightarrow 0 \) \(m_\nu \sim \frac{\mu v_L^2}{2 v_d v_u} < 10^{-9} \) GeV ; therefore \(\nu_L < 10^{-3} \) GeV
- \(\nu_L \rightarrow 0 \) \(m_\nu \sim \frac{g^2 v_d^2 y_\nu^2 v_R^2}{\mu^2 M_\chi} < 10^{-9} \) GeV ; therefore \(y_\nu < 10^{-5} \)
Testing the connection between Z' and R-parity violation.

- New production mechanism for sparticles, especially sleptons:

\[
\tilde{\nu}_i \rightarrow e_i e_j
\]

LSP $\tilde{\nu}$ has lepton flavor violating decays

\[
\tilde{\nu}_i \rightarrow e_i e_j \sim \frac{(y_e)_i (y_{\nu})_{jk} (v_R)_k}{\mu} \sim \lambda_{ij}
\]

$Z' \rightarrow e\mu e\mu, \mu\tau \mu\tau$ possible

Studied by Lee PLB 2008 but no specific R-parity model.
Z' decays

Testing the connection between \(Z' \) and R-parity violation.

- New production mechanism for sparticles, especially sleptons:

\[
\bar{q} \rightarrow \tilde{\nu}_i \rightarrow e_i e_j
\]

LSP \(\tilde{\nu} \) has lepton flavor violating decays

\[
\sim \frac{(y_e)_i (y_\nu)_{jk} (v_R)_k}{\mu} \sim \lambda_{ij}
\]

\(Z' \rightarrow e\mu e\mu, \mu\tau \mu\tau \) possible

Studied by Lee PLB 2008 but no specific R-parity model.
LSP decay:

- $\tilde{\chi}^0_1 \rightarrow \nu_L \ Z, \ l^+ \ W^-$

- Due to lepton - neutralino/chargino mixings

SUSY discovery no longer dependent on missing energy signals.

For a gravitino LSP, these decays are possible for the NLSP.
A gravitino LSP decays to SM particles without R-Parity.

For a light enough gravitino, $\tilde{G} \rightarrow \gamma \nu$

Suppressed by both M_P and R-parity ($\sim m_\nu$); Takayama and Yamaguchi 2000

Therefore $\Gamma \sim \frac{m_{3/2}^3 v_L^2}{M_P^2 m_\chi^{02}}$

$\tau \sim 10^{26} \text{ sec} \times \left(\frac{m_\chi^0}{1000 \text{ GeV}} \right)^2 \left(\frac{1 \text{ GeV}}{m_{3/2}} \right)^3 \left(\frac{10^{-4} \text{ GeV}}{v_L} \right)^2$

For $m_{3/2} > 1 \text{ KeV}$, the gravitino is a cold dark matter candidate.
Outline

1. Introduction: SUSY and R-parity

2. $B - L$ and R-parity
 - Spectrum
 - Pheno

3. Left-Right models and R-parity
 - Spectrum

4. Conclusion
Why Left-Right?

There are many motivations for studying $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$:

- The vacuum prefers $\nu_R \gg \nu_{ew}$: suppresses $V+A$ interactions.
- Hints at *unification* since its gauge group is a subgroup of $SO(10)$.
- Can implement *leptogenesis*.
- *Electric charge* is on a more physical footing:

 $$Q = l_{3L} + l_{3R} + \frac{1}{2} (B - L)$$

- And of course, *neutrino masses*.
Traditional SUSY left-right models contain $B - L$ even triplet fields.

- Automatic R-parity conservation.
- Can also implement type I seesaw mechanism.

But automatic R-parity conservation is hard; requires one of the following:

- An extra singlet.
- Non-renormalizable terms.
- Or more complicated breaking structure.

We can avoid all of this by applying the same mechanism as before.
Automatic R-parity conservation

Traditional SUSY left-right models contain $B - L$ even triplet fields.

- Automatic R-parity conservation.
- Can also implement type I seesaw mechanism.

But automatic R-parity conservation is hard; requires one of the following:

- An extra singlet.
- Non-renormalizable terms.
- Or more complicated breaking structure.

We can avoid all of this by applying the same mechanism as before.
Field content:

<table>
<thead>
<tr>
<th>Fields</th>
<th>$SU(2)_L \times SU(2)R \times U(1){B-L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>$(2, 1, +\frac{1}{3})$</td>
</tr>
<tr>
<td>Q^c</td>
<td>$(1, 2, -\frac{1}{3})$</td>
</tr>
<tr>
<td>L</td>
<td>$(2, 1, -1)$</td>
</tr>
<tr>
<td>L^c</td>
<td>$(1, 2, +1)$</td>
</tr>
<tr>
<td>Φ</td>
<td>$(2, 2, 0)$</td>
</tr>
<tr>
<td>Δ^c</td>
<td>$(1, 3, -2)$</td>
</tr>
<tr>
<td>$\bar{\Delta}^c$</td>
<td>$(1, 3, +2)$</td>
</tr>
<tr>
<td>Δ</td>
<td>$(3, 1, 2)$</td>
</tr>
<tr>
<td>$\bar{\Delta}$</td>
<td>$(3, 1, -2)$</td>
</tr>
</tbody>
</table>
New field content:

<table>
<thead>
<tr>
<th>Fields</th>
<th>$SU(2)_L \times SU(2)R \times U(1){B-L}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>$(2, 1, +\frac{1}{3})$</td>
</tr>
<tr>
<td>Q^c</td>
<td>$(1, 2, -\frac{1}{3})$</td>
</tr>
<tr>
<td>L</td>
<td>$(2, 1, -1)$</td>
</tr>
<tr>
<td>L^c</td>
<td>$(1, 2, +1)$</td>
</tr>
<tr>
<td>Φ</td>
<td>$(2, 2, 0)$</td>
</tr>
<tr>
<td>Δ^c</td>
<td>$(1, 3, -2)$</td>
</tr>
<tr>
<td>$\bar{\Delta}^c$</td>
<td>$(1, 3, +2)$</td>
</tr>
<tr>
<td>Δ</td>
<td>$(3, 1, 2)$</td>
</tr>
<tr>
<td>$\bar{\Delta}$</td>
<td>$(3, 1, -2)$</td>
</tr>
</tbody>
</table>
The Simplest SLRM

P. Fileviez Pérez and SS: **PLB ’09**

\[
W = Y_Q Q^T i\sigma_2 \Phi i\sigma_2 Q^C + Y_L L^T i\sigma_2 \Phi i\sigma_2 L^C \\
+ \mu \text{Tr} \left(\Phi^T i\sigma_2 \Phi i\sigma_2 \right)
\]

with

\[
Q = \begin{pmatrix} u \\ d \end{pmatrix} \quad Q^c = \begin{pmatrix} u^c \\ d^c \end{pmatrix} \quad L = \begin{pmatrix} \nu \\ e \end{pmatrix} \quad L^c = \begin{pmatrix} \nu^c \\ e^c \end{pmatrix}
\]

And under parity:

\[
Q \leftrightarrow Q^c^* \quad L \leftrightarrow L^c^* \quad \Phi \leftrightarrow \Phi^\dagger
\]

So that \(g_L = g_R \), \(Y_Q \) and \(Y_L \) are hermitian and \(\mu \) is real.
Gauge bosons:

- \(M_{W'}^2 \sim \frac{1}{4} g_R^2 v_R^2 \gtrsim 700 \) (1600) GeV: direct (indirect).
- \(M_{Z'}^2 \sim \frac{1}{4} (g_R^2 + g_{BL}^2) v_R^2 \gtrsim 1000 \) (2000) GeV

Scalar masses:

- Left-handed sleptons masses as before.
- Right-handed sleptons eaten; neutral CP-even, \(m \sim M_{W'} \)
- \(m_{H^+}^2 - m_{A^0}^2 \sim 2M_W^2 \) instead of \(M_W^2 \)
- MSSM heavy Higgses \((H^0, A^0, H^+) \) masses at right-handed scale.
Outline

1. Introduction: SUSY and R-parity

2. $B - L$ and R-parity
 - Spectrum
 - Pheno

3. Left-Right models and R-parity
 - Spectrum

4. Conclusion
$G \supset B - L$

$\mathcal{R}_p + \nu^c$

$\langle \nu^c \rangle \sim m_{\text{susy}}$

MSSM+Z'

R-parity Violation
$G \supset B - L$

$R_p + \nu^c$

$\langle \nu^c \rangle \sim m_{\text{susy}}$

MSSM+Z'

R-parity Violation

No Proton decay
Conclusion

\[G \supset B - L \]\n
\[R_p + \nu^c \]

\[\langle \nu^c \rangle \sim m_{\text{susy}} \]

MSSM+Z'

R-parity Violation

No Proton decay

Gravitino LSP long-lived
Conclusion

\[G \supset B - L \]
\[R_p + \nu^c \]
\[\langle \nu^c \rangle \sim m_{\text{susy}} \]

MSSM+Z'

No Proton decay

R-parity Violation

Gravitino LSP long-lived

Minimal and predictive
$G \supset B - L$

$R_p + \nu^c$

$\langle \nu^c \rangle \sim m_{\text{susy}}$

MSSM+Z'

R-parity Violation

No Proton decay

Gravitino LSP long-lived

$Z' \rightarrow e_ie_j$

Minimal and predictive
Conclusion

\[G \supset B - L \]

\[R_p + \nu^c \]

\[\langle \nu^c \rangle \sim m_{\text{susy}} \]

MSSM + Z'

R-parity Violation

No Proton decay

Gravitino LSP long-lived

Minimal and predictive

\[Z' \rightarrow e_i e_j \]

\[\nu \text{ masses} \]