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The great lesson of the Tevatron

What experimentalists choose to measure is not necessarily
what theorists predict.

Corollary: What theorists choose to predict may not be measurable.

The challenge in transferring our experience to LHC
lies in merging this experience into a common understanding.
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The great lesson of the Tevatron

What experimentalists choose to measure is not necessarily
what theorists predict.

Corollary: What theorists choose to predict may not be measurable.

The challenge in transferring our experience to LHC
lies in merging this experience into a common understanding.

Looking toward early LHC running, I will briefly describe:

• A theoretical issue with Z+jets — the calibration signal

• An experimental issue with leptons — the calibration objects
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What theorists predict

We have heard at this conference that we calculate

• Perturbative cross sections: LO + NLO + NNLO + . . .

Sometimes RG-improved LL + NLL + NLLL + . . .

(see earlier talks by C. Berger, S. Marzani, F. Petriello, coming T. Robens)

• Fed through showering Monte Carlos: PYTHIA, HERWIG, etc.

(see earlier talks by C. Bauer, S. Mrenna)

• And predict exclusive final states:

• Exclusive predictions are still a new concept.

• Single-top-quark production was the first completely exclusive
cross section that required matching tools, and it was only
discovered at the Tevatron within the last year.

• One of the first plots for any experimental analysis seems to be
the n-jet spectrum — a theoretically exclusive cross section that is
completely dependent on experimental jet definitions.
(see earlier talk by S. Ellis)
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What theorists (are asked to) predict

Exclusive Z + n jets will provide the LHC jet calibration

What we see at the Tevatron:
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What theorists (are asked to) predict

Exclusive Z + n jets will provide the LHC jet calibration

What we see at the Tevatron:
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The Tevatron is finally now accumulating
enough data to be sensitive to this.

• The simplicity of the Z + j n-jet spectrum arises because the
Tevatron is dominated by matrix element-based physics.
⇒ straightforward αs power counting.

Zack Sullivan, Illinois Institute of Technology – p.4/33



Z+jets ≡ jet calibration at LHC
(with correct power counting)

‘2 jet’ sum
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From a luminosity (with power-counting) point of view,
Z ≈ Z + 1 jet ≈ Z + 2 jets! (True of W + X as well.)
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Z+jets ≡ jet calibration at LHC
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From a luminosity (with power-counting) point of view,
Z ≈ Z + 1 jet ≈ Z + 2 jets! (True of W + X as well.)

Color factors and topology are important:

⇒ This is VERY sensitive to cuts.

Jet counting
is ill-defined
or poorly-defined

The LHC is not a glue factory for physics you care about.

— Color-neutral particles couple to quarks, not gluons.
— Colored particles tend to be heavy (1+ TeV), and see valence quarks.

(see next talk by P. Nadolsky for more on PDFs)
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What experimentalists measure

• Photons — ATLAS was designed specifically to look for photons

There is a long-standing discrepancy in γ + j

Photon objects are generically ill-defined.

JETPHOX NLO did improve the fits

OPAL, ZEUS found Frixione photon definition
works better, but it is still not widely used.
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What experimentalists measure

• Photons — ATLAS was designed specifically to look for photons

There is a long-standing discrepancy in γ + j

Photon objects are generically ill-defined.

JETPHOX NLO did improve the fits

OPAL, ZEUS found Frixione photon definition
works better, but it is still not widely used.

• Jets — LHC events look a lot like RHIC events

Will jets be well-defined? (see talk by S. Ellis)
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What experimentalists measure

• Leptons: e±, µ±

Z → e+e−/µ+µ− used to calibrate everything.

That’s a good reason to look more closely at leptons . . .
but there are strong theoretical motives as well.

So, why pay attention to leptons?
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Higgs production — the promise

The search for the Higgs boson has driven the field of high energy physics
for a long time. Now we approach the Age of Discovery.
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The Tevatron is in a race to rule out a SM Higgs before LHC first reports,
while the LHC promises an “easy” observation if the Higgs is there.

These impressive predictions depend on sophisticated understanding
of the backgrounds.
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SUSY trilepton production
— the “golden channel”

The measurement of trileptons plus missing energy is expected to be
a clean probe of chargino and neutralino production.
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The missing pieces to multi-leptons+/ET

H → WW and χ̃+
1 χ̃0

2 signals share the common trait of multiple leptons
plus missing transverse energy.

Experimental collaborations have spent significant time modeling
(and measuring) backgrounds to these processes, including both
real Standard Model physics and complicated experimental effects
(e.g., jet fakes, misreconstruction, etc.)

In all cases, the background to multilepton signatures from the decays
of heavy-flavor quarks (b, c) were declared “obviously” insignificant.

⇒ RULE of THUMB: All jet signals fake leptons at 10−4.

Is this really true? The real physical processes below do not matter?
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The physics of isolated leptons
from heavy-flavor decays
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Physics of isolated leptons from b decay
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• Isolation leaves ∼7.5 × 10−3 µ/b
≫ 10−4 per light jet
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Harder b’s can give isolated e’s,
because e cuts must allow more
energy in the calorimeter

It is difficult to reduce this without
losing efficiency for primary e.

Isolation is not extremely effective
for leptons from b decay.
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Isolated leptons from b/c production & decay

b! �; eeiso�iso
b! �; e pT�;e > 10 GeV
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More isolated e than µ per b.

• 1/2 of all isolated µ come from
b with pTb < 20 GeV.

It is common for analyses to start
simulations with pTb > 20 GeV.
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Isolated leptons from b/c production & decay
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The story repeats for c decays

1 twist: D decays have many pions
π± fake e at ∼10−4

⇒ Large “eiso” rate
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Dileptons at the Tevatron and LHC

The foil:

Higgs production and decay to WW

Z.S., E. Berger, PRD 74, 033008 (2006)
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Dileptons and the Higgs
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Higgs decays through W+W− to opposite-sign
dileptons is expected to give the largest
significance signal for 135 < MH < 219 GeV

CDF, D0/, ATLAS, and CMS have devoted a
significant portion of their total effort to
measuring and understanding this channel.
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Higgs decays through W+W− to opposite-sign
dileptons is expected to give the largest
significance signal for 135 < MH < 219 GeV

CDF, D0/, ATLAS, and CMS have devoted a
significant portion of their total effort to
measuring and understanding this channel.

How important are leptons from heavy flavor (b, c) decays?
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There are MANY potential QCD and EW processes:
bb̄ + X, cc̄ + X, Wc, Wcc̄, Wbb̄, single-top
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H → W+W− → e+e−/ET/e±µ∓/ET/µ+µ−/ET

Taken from 1/3 fb−1study, D0/, PRL 96, 011801 (2006)

MH (GeV) 120 140 160 180 200

H → WW (∗) 0.125 ± 0.002 0.398 ± 0.008 0.68 ± 0.01 0.463 ± 0.009 0.210 ± 0.004

Z/γ∗ 7.5 ± 1.0 3.8 ± 0.6 4.0 ± 0.7 6.6 ± 0.9 9.9 ± 1.1

Diboson 8.1 ± 0.2 11.7 ± 0.3 12.3 ± 0.3 11.6 ± 0.3 9.6 ± 0.3

tt̄ 0.11 ± 0.02 0.29 ± 0.02 0.47 ± 0.03 0.66 ± 0.05 0.72 ± 0.05

W+jet/γ 14.2 ± 2.1 5.8 ± 1.2 2.8 ± 0.9 0.7 ± 0.5 0.7 ± 0.5

Multi-jet 0.3 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.3 ± 0.1 0.3 ± 0.1

Bknd sum 30.1 ± 2.3 21.8 ± 1.4 19.7 ± 1.2 19.8 ± 1.1 21.2 ± 1.2

Data 21 20 19 19 14

So the relevant backgrounds are:

D0/: WW , small Drell-Yan, small rate from π± faking e±

ATLAS: WW , some Wt, small tt̄

Is that the end of the story?. . .
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Breakdown of LS/OS leptons at D0/

σll (fb): ee eµ µµ

LS OS LS OS LS OS

H → WW — 0.73 ± 0.04 — 1.26 ± 0.05 — 0.60 ± 0.03

WW — 12 ± 1 — 20 ± 1 — 9.3 ± 0.9

bb̄(j) — 2.1 — 5.6 — 24

Wc 0.8 ± 0.4 2.3 ± 1.1 1.1 ± 0.4 3.7 ± 1.8 — 3.1 ± 2.2

Wbb̄ 0.4 ± 0.2 0.4 ± 0.1 2.1 ± 1.6 1.3 ± 0.4 2.5 ± 1.6 2.0 ± 1.1

Wcc̄ 1.4 ± 0.5 1.1 ± 0.4 1.0 ± 0.2 1.6 ± 0.3 1.0 ± 0.4 0.9 ± 0.2

all else 0.1 1.6 0.3 0.3 0.04 0.1

bb̄ more than doubles the background to µ+µ−.

Other channels see 50% increases.

Is this consistent with the D0/ result?
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σll (fb): ee eµ µµ

LS OS LS OS LS OS

H → WW — 0.73 ± 0.04 — 1.26 ± 0.05 — 0.60 ± 0.03

WW — 12 ± 1 — 20 ± 1 — 9.3 ± 0.9

bb̄(j) — 2.1 — 5.6 — 24

Wc 0.8 ± 0.4 2.3 ± 1.1 1.1 ± 0.4 3.7 ± 1.8 — 3.1 ± 2.2

Wbb̄ 0.4 ± 0.2 0.4 ± 0.1 2.1 ± 1.6 1.3 ± 0.4 2.5 ± 1.6 2.0 ± 1.1

Wcc̄ 1.4 ± 0.5 1.1 ± 0.4 1.0 ± 0.2 1.6 ± 0.3 1.0 ± 0.4 0.9 ± 0.2

all else 0.1 1.6 0.3 0.3 0.04 0.1

bb̄ more than doubles the background to µ+µ−.

Other channels see 50% increases.

Is this consistent with the D0/ result? Yes! to within 1–2σ.

Do you really trust this as an absolute prediction?

Zack Sullivan, Illinois Institute of Technology – p.17/33



Breakdown of LS/OS leptons at D0/

σll (fb): ee eµ µµ

LS OS LS OS LS OS

H → WW — 0.73 ± 0.04 — 1.26 ± 0.05 — 0.60 ± 0.03

WW — 12 ± 1 — 20 ± 1 — 9.3 ± 0.9

bb̄(j) — 2.1 — 5.6 — 24

Wc 0.8 ± 0.4 2.3 ± 1.1 1.1 ± 0.4 3.7 ± 1.8 — 3.1 ± 2.2

Wbb̄ 0.4 ± 0.2 0.4 ± 0.1 2.1 ± 1.6 1.3 ± 0.4 2.5 ± 1.6 2.0 ± 1.1

Wcc̄ 1.4 ± 0.5 1.1 ± 0.4 1.0 ± 0.2 1.6 ± 0.3 1.0 ± 0.4 0.9 ± 0.2

all else 0.1 1.6 0.3 0.3 0.04 0.1

bb̄ more than doubles the background to µ+µ−.

Other channels see 50% increases.

Is this consistent with the D0/ result? Yes! to within 1–2σ.

Do you really trust this as an absolute prediction?
Using tails of tails times unknown fractions? No.

The experiments do not have absolute normalized predictions anyway.

What we want is to understand all of the physical processes at play.
For that, we have to measure the backgrounds. . .
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ATLAS-like search for 160 GeV Higgs

Cut level H → WW WW bb̄j⋆ Wc single-top Wbb̄ Wcc̄

Isolated l+l− >10 GeV 336 1270 > 35700 12200 3010 1500 1110

ETl1
> 20 GeV 324 1210 > 5650 11300 2550 1270 963

/ET > 40 GeV 244 661 > 3280 2710 726 364 468

Mll < 80 GeV 240 376 > 3270 2450 692 320 461

∆φ < 1.0 136 124 > 1670 609 115 94 131

|θll| < 0.9 81 83 > 1290 393 68 49 115

|ηl1
− ηl2

| < 1.5 76 71 > 678 320 48 24 104

Jet veto 41 43 > 557 175 11 12 7.4

130 < M ll

T
< 160 GeV 18 11 — 0.21 1.3 0.04 0.09

The biggest difference in this analysis is that cross sections are bigger,
so the cuts are tighter.

• bb̄j⋆ ME is preselected to pass /ET cut. (cc̄/cc̄j was just too hard)
Looser cuts indicate that “>” is at least a factor of 5.

However, this allowed us to demand 2 reconstructed isolated leptons!

• After the /ET cut, all real power comes from the M ll
T cut.

Warning: Numbers can be deceptive!
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Dileptons at LHC and b quark decays
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Dileptons at LHC and b quark decays
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Solution: The second lepton pT falls exponentially.
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Leading edge
20 GeV lower!

H → WW
survives!

We can measure the HF background in situ and tune it away with cuts.
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Trileptons at the Tevatron and LHC

The foil:

SUSY chargino/neutralino production

Z.S., E. Berger, PRD 78, 034030 (2008)
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Motivation: Trileptons at LHC
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signature of supersymmetry.

CMS and ATLAS both have analyses
designed to observe this signal.
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WZ was expected to be the largest
source of low-pT trileptons at LHC.

Wγ∗ has not previously been
included.
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WZ was expected to be the largest
source of low-pT trileptons at LHC.

Wγ∗ has not previously been
included.

P

P

Z
e-/µ-

e+/µ+

b B e/µ

How important are leptons from heavy flavor
(b, c) decays?

There are MANY potential processes:
bZ/γ, bb̄Z/γ, cZ/γ, cc̄Z/γ, bb̄W , cc̄W , tt̄, tW , tb̄

NOTE: All photons are virtual, and split to l+l−
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Trileptons at CDF

CDF, PRD 79,052004 (2009)

Previous Tevatron studies ignored
leptons from heavy-flavor decays.

CDF decided to follow our example

— There are no trilepton events,
so they looked in dilepton regions:

jets(if N     >1) jets(if N     >1)
Control D

Control A

Control D

Control C

Control B

Signal

10

15

Control Z
76 10610.5 15

ET

M

(GeV)

µµ (GeV/c )2

Signal

Control C

Dilepton regions

Conclusion: Leptons from heavy-flavor decays
are a dominant background.
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Trileptons: SUSY & SM at CMS w/ 30 fb−1

N l = 3, MOSSF
ll

Channel NoJets < 75 GeV

LM9 248 243

LM7 126 123

LM1 46 44

WZ/γ 1880 538

tt̄ 1540 814

tW 273 146

tb̄ 1.1 1.0

bZ/γ 14000 6870

cZ/γ 3450 1400

bb̄Z/γ 8990 2220

cc̄Z/γ 4680 1830

bb̄W 9.1 7.6

cc̄W 0.19 0.15

Analysis cuts:
• 3 leptons

• No jets (ETj > 30 GeV)

• Remove Z peak
(demand MOSSF

ll ) < 75 GeV

(bZ=
)/5
WZ=
SUSY LM9

cut

Z peakMll (GeV)

d�=dM ll(fb/G
eV

)
120100806040200

1.0

0.8

0.6

0.4

0.2

0.0

Z+heavy flavor decays are
10× WZ/γ + tt̄!
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Two additional cuts: /ET and angular correlations

Leptons from SUSY decays are SOFT ⇒ Cannot raise pTl cut.

Missing ET

bZ=
t�tCMS jWZ=
SUSY LM9

=ET (GeV)

d�=d=E T(fb/Ge
V

)

100806040200

1.0

0.8

0.6

0.4

0.2

0.0

Z/γ+heavy flavors – no intrinsic /ET

Comes from misreconstruction,
energy lost down beam pipe

Natural /ET in SUSY points low as well
χ̃0

1’s partially balance out

A /ET cut demanding
/ET > 30–40 GeV is very effective

(bZ=
)=20(WZ=
)=2
�CM12

d�=d�CM 12
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Two additional cuts: /ET and angular correlations

Leptons from SUSY decays are SOFT ⇒ Cannot raise pTl cut.

Missing ET

bZ=
t�tCMS jWZ=
SUSY LM9

=ET (GeV)

d�=d=E T(fb/Ge
V

)

100806040200

1.0

0.8

0.6

0.4

0.2

0.0

Z/γ+heavy flavors – no intrinsic /ET

Comes from misreconstruction,
energy lost down beam pipe

Natural /ET in SUSY points low as well
χ̃0

1’s partially balance out

A /ET cut demanding
/ET > 30–40 GeV is very effective

/ET is poorly measured

Angular correlations(bZ=
)=20(WZ=
)=2SUSY LM9

�CM12 (deg.)

d�=d�CM 12(fb/d
eg

.)

180160140120100806040200

0.25

0.20

0.15

0.10

0.05

0.00

Angles measured extremely well

All combinations different (θCM
12 shown)

Demand θCM
12 > 45◦, θCM

13 > 40◦,
θCM
23 < 160◦

Reduces B by 30% for 5% loss of S
Not optimized

Zack Sullivan, Illinois Institute of Technology – p.24/33



Trileptons: SUSY & SM at CMS (+new cuts)

N l = 3, MOSSF
ll Angular

Channel NoJets < 75 GeV /ET > 30 GeV cuts

LM9 248 243 160 150

LM7 126 123 89 85

LM1 46 44 33 32

WZ/γ 1880 538 325 302

tt̄ 1540 814 696 672

tW 273 146 123 121

tb̄ 1.1 1.0 0.77 0.73

bZ/γ 14000 6870 270 177

cZ/γ 3450 1400 45 35

bb̄Z/γ 8990 2220 119 103

cc̄Z/γ 4680 1830 69 35

bb̄W 9.1 7.6 5.6 5.3

cc̄W 0.19 0.15 0.12 0.11
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Significance of SUSY point LM9 in 30 fb−1

1. Our calculations are LO.
NLO K-factors are large (1.5–2) on most processes,
BUT, jet veto will reduce this.

2. ISR is not well determined
The rate of > 30 GeV jets can be changed by a factor of 4
depending on assumptions in PYTHIA about ISR.

We present our calculation, and one that scales down B by 4 to show
the range of possible significances

N l = 3, MOSSF
ll Angular

NoJets < 75 GeV /ET > 30 GeV cuts

S/
√

BLM9 1.33 2.07(1.79) 3.93(3.74) 3.94(3.79)

S/
√

B
CMS j

LM9 2.63 4.09(3.54) 7.78(7.39) 7.79(7.49)

(Parentheses include leptons from fakes from CMS Table 6, Note 2006/113)

We will not know which ISR estimate is correct until we measure it at LHC
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What have we learned about
leptons from heavy-flavor (b,c) decays?

(Z.S., E. Berger, PRD 74, 033008 (2006); PRD 78, 034030 (08))

1. Heavy-flavor (b, c) decays to leptons will dominate low-pT

isolated leptons at LHC:
Dileptons from bb̄/cc̄ and Wc ∼50× all other backgrounds
Trileptons from Z/γ∗+heavy flavors (HF) ∼10× all other backgrounds
A good estimate is to treat 1/200 of every b or c as an isolated lepton.

2. For H → WW , raising the minimum pT is the most effective way
to suppress leptons from HF
ATLAS and CMS have taken this to heart.

3. Raising minimum pT is not viable for SUSY trileptons, but could:
(a) Require /ET >30 GeV, Z/γ∗+ HF→Z/γ∗+ HF/30 Hard to measure low /ET

(b) Impose cuts on well-measured angles, Z/γ∗+HF reduced by 30%

4. Overall normalization is dominated by assumptions regarding ISR
Huge uncertainties in effectiveness of jet veto

If large ISR exists, may want to loosen jet veto to recover SUSY signal
ISR questions will be resolved with initial data from LHC

Any signal that has low-pT leptons MUST consider the background from
heavy flavor (b, c) decays
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Conclusions

In the joint session with ATLAS, Tom LeCompte said:

“We need to develop our own experience at the LHC.”
I completely agree. I would add that we need to leverage our
continually growing experience at the Tevatron.

— Many rare processes, or extreme regions of phase space, will play a
significant role at LHC. The Tevatron is now collecting enough data with
well-understood detectors to prepare us for when that LHC experience
crashes over us.

Tom also said:

“We want to be able to compare our data with theory.”
Improvements are needed in our theoretical understanding of:

isolated leptons, photons, jets, missing energy, etc.

Our Tevatron experience will undoubtedly transfer to the LHC.

One of our jobs as theorists will be to ensure the right
experience will be applied to exciting challenges ahead.
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BACKUPS
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Other angular correlations

Angles are well-measured, and defined in the trilepton CM frame.(bZ=
)=20(WZ=
)=2SUSY LM9

�CM13 (deg.)

d�=d�CM 13(fb/d
eg

.)

180160140120100806040200

0.25

0.20

0.15

0.10

0.05

0.00

Suggested cut: θCM
13 > 40◦

(bZ=
)=20(WZ=
)=2SUSY LM9

�CM23 (deg.)

d�=d�CM 23(fb/d
eg

.)

180160140120100806040200

0.25

0.20

0.15

0.10

0.05

0.00

Suggested cut: θCM
23 < 160◦

These cuts are almost free, and not optimized.

5% signal decrease, but 30% backgound decrease
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CMS SUSY points LM1, LM7

Representative opposite-sign same-flavor (OSSF) invariant masses

LM1

(bZ=
)/5

WZ=
10�(SUSY LM1)

cut

Z peakMll (GeV)

d�=dM ll(fb/G
eV

)

120100806040200

1.0

0.8

0.6

0.4

0.2

0.0

Signal endpoint above Z-peak cut
and signal is small

LM7

(bZ=
)/5

WZ=
2�(SUSY LM7)

cut

Z peakMll (GeV)

d�=dM ll(fb/G
eV

)

120100806040200

1.0

0.8

0.6

0.4

0.2

0.0

LM7 similar to LM9, but smaller
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PDFs control relevant physics at LHC

x� bx� usea

x� uval

x� g

5 TeV2 TeV200 GeV

LHC (x� PDF) vs.x atQ = x� 14 TeV

x

x�PDF

10.10.010.001

10210110010�110�210�310�410�5

3 important pivot points:

200 GeV uval ≈ usea — valence is
important here.

2 TeV uval > g — above a TeV,
valence quarks dominate.

5 TeV PDFs “run out” — nothing
heavier gets produced
on-shell.
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5 TeV2 TeV200 GeV

LHC (x� PDF) vs.x atQ = x� 14 TeV

x
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10.10.010.001

10210110010�110�210�310�410�5

3 important pivot points:

200 GeV uval ≈ usea — valence is
important here.

2 TeV uval > g — above a TeV,
valence quarks dominate.

5 TeV PDFs “run out” — nothing
heavier gets produced
on-shell.

The LHC is not a glue factory for physics you care about.

— Color-neutral particles couple to quarks, not gluons.
— Colored particles tend to be heavy (1+ TeV), and see valence quarks.

This figure is almost identical to the Tevatron (at 7 times the energy).

What differs is that LHC is a pp collider. This changes everything.
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PDFs at Tevatron ∼ scaled down LHC

x� bx� usea

x� uval

x� g

500 GeV200 GeV20 GeV

Tevatron (x� PDF) vs.x atQ = x� 1:96 TeV
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