QCD AND ELECTROWEAK CORRECTIONS TO HIGGS PRODUCTION

Frank Petriello University of Wisconsin, Madison

May 20, 2009

Anastasiou, Boughezal, FP arXiv:0811:3458 Keung, FP arXiv:0905.2775

Outline

- * Review of experiment, theory for SM Higgs
- * Electroweak corrections to inclusive production
- * Updated numerics and fun with PDFs
- * Electroweak and quark-mass effects at high Higgs pT

Why we expect a TeV scale Higgs

Last undiscovered particle of the SM Many reasons to expect it (or something else) to be observed soon

Higgs in SM extensions

The uncertainty in EWSB mechanism makes Higgs a portal into new physics at the TEV scale

Loop-induced gluon, photon modes can have O(1) deviations

SM Higgs circa 2008

Precision EW upper bound and direct search lower bound at 95% CL: $114 < M_H/\text{GeV} < 163$

News from the Tevatron: First exclusion in 2008; new combined results exclude 160-170 GeV SM Higgs at 95% CL arXiv:0903.4001

Carefully reconsider SM prediction in light of experimental sensitivity

SM Higgs production

Tevatron exclusion limit entirely from gg→H→WW BR(H→WW) > 90% for 160-170 GeV Higgs

QCD corrections at NLO

 $- \frac{\text{Top-loop dominant; bottom loop gives}}{-10\% \text{ correction from interference} \{m_b^2 \ln^2(M_H/m_b)\}}$

What makes is sensitive to new physics (begins at 1-loop) also makes it tough to calculate

00000000

(000000)

t,b

E.g., need

0000000000

NLO corrections >100% at Tevatron, LHC

Harlander, Kilgore; Anastasiou, Melnikov 2002

NNLO in the EFT

Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, J. Smith, van Neerven 2002-3

Anastasiou, Melnikov, FP 2005

Full NNLO differential results known K-factor: -3.5 at Tevatron, -2 at LHC N3LO scale dependence indicates stability of expansion

Electroweak corrections

Residual QCD uncertainty -10% ⇒ EW corrections potentially important to match QCD and experimental precision

Light-quark terms

Aglietti, Bonciani, Degrassi, Vicini 2004; Actis, Passarino, Sturm, Uccirato 2008 g

Up to 9% at threshold relative to LO QCD

EFT formulation $\mathcal{L} = -\alpha_s \frac{C_1}{4n} H G^a_{\mu\nu} G^{a\mu\nu}$ $C_{1} = -\frac{1}{3\pi} \left\{ 1 + \lambda_{EW} \left[1 + a_{s}C_{1w} + a_{s}^{2}C_{2w} \right] + a_{s}C_{1q} + a_{s}^{2}C_{2q} \right\}$ 000 000 999 000 7007

Radius of convergence: M_H≤M_W

However, top-quark EFT valid to 1 TeV>2mt; reason to expect similar here (gluon pdf shape)

⇒ exact. for dominant radiation pieces in resummation limit $\tau = M_{\rm H^2}/\hat{S} \rightarrow I$ for all $M_{\rm H}$

$$\mathcal{L} = -\alpha_s \frac{C_1}{4v} H G^a_{\mu\nu} G^{a\mu\nu}$$

$$C_{1} = -\frac{1}{3\pi} \left\{ 1 + \lambda_{EW} \left[1 + a_{s}C_{1w} + a_{s}^{2}C_{2w} \right] + a_{s}C_{1q} + a_{s}^{2}C_{2q} \right\}$$
$$C_{1}^{fac} = -\frac{1}{3\pi} \left(1 + \lambda_{EW} \right) \left\{ 1 + a_{s}C_{1q} + a_{s}^{2}C_{2q} \right\}$$

Factorization holds if $C_{IW}=C_{Iq}$, $C_{2W}=C_{2q}$

$$C_{1q} = \frac{11}{4}, \quad C_{2q} = \frac{2777}{288} + \frac{19}{16}L_t + N_F\left(-\frac{67}{96} + \frac{1}{3}L_t\right)$$

$$\lambda_{EW} = \frac{3\alpha}{16\pi s_W^2} \left\{ \frac{2}{c_W^2} \left[\frac{5}{4} - \frac{7}{3} s_W^2 + \frac{22}{9} s_W^4 \right] + 4 \right\}$$

Matching to the EFT I

Matching at $O(\alpha)$:

 \Rightarrow Equate to get λ_{EW}

Matching to the EFT II

Matching at $O(\alpha \alpha_s)$:

Analytical result

No renormalization needed (finite renormalization needed for top quark case)

 $C_{IW}=7/6$, compared to factorization hypothesis $C_{IW}=C_{IQ}=11/4$

 $(C_{Iq}-C_{Iw})/C_{Iq}\approx 0.6 \Rightarrow O(I)$ violation of assumption

Numerical effect on hadronic cross section?

Numerical test of K-factor

EFT supports that EW corrections get same Kfactor as top contributions

Tevatron exclusion

First limits: M_H=170 GeV excluded

> What went into the SM prediction:

- Same K-factors assumed √
- Same QCD corrections for t,b
- Old PDFs (MRST 2002)

Combined CDF, Do results (2008)

arXiv:0808.0534

Provide updated SM prediction that updates these assumptions

 $\sigma^{best} = \sigma^{NNLO}_{QCD} + \sigma^{NNLO}_{EW}$

 $\sigma_{QCD}^{NNLO} = \sigma^{(0)}G_{ij}(z;\alpha_s) + \sigma_b^{(0)}G_{ij}^{(0)}(z)K_{bb} + \sigma_{t,b}^{(0)}G_{ij}^{(0)}(z)K_{tb}$

NNLO large-mt K-factor, exact LO result

Exact NLO b², t-b interferences K-factors $1.4 \le K_{bb,tb} \le 1.7$ for $120 \le M_H \le 180$ GeV; 3.5 used for both in old Catani et al. study

Choose µ=M_H/2 to reproduce central value of resummation to better then 1% Catani, de Florian, Grazzini, Nason '03 Comparison of pole, MSbar b-quark mass (<1% change) Use of newer MRST PDFs ...

Circa December 2008

MRST 2002 \rightarrow 2006: increase of α_s and gluon density

For M_H=170 GeV:

original	MRST 2006 $PDFs$	K_{tb}, K_{bb}	EW effects	
0.3542	0.3650	0.3868	0.3943	

Act constructively to increase by 7-10% True for 120 $\leq M_{\rm H} \leq$ 180 GeV (Note: PDF systematic error ±5%, 90% CL)

Circa January 2009

MSTW 2008 PDF release arXiv:0901.0002

- Run II inclusive jet data
- Decrease of $\alpha_s(M_Z)$ from 0.119 \rightarrow 0.117
- Gluon density decreased at x~0.1
- gg luminosity error increased from $5\% \rightarrow 10\%$

M_H=170 GeV:

MRST 2001	$\rm MRST~2004$	MRST 2006	MSTW 2008
0.3833	0.3988	0.3943	0.3444

~10-15% decrease in predicted cross section !

Gluon distributions

MSTW 2008 closer to CTEQ 6.6 gluon

Numerical results for

Tevatron

$m_H[\text{GeV}]$	$\sigma^{best}[pb]$	$m_H[\text{GeV}]$	$\sigma^{best}[pb]$
110	$1.417 \ (\pm 7\% \ pdf)$	160	$0.4344 \ (\pm 9\% \ pdf)$
115	$1.243 \ (\pm 7\% \ \mathrm{pdf})$	165	$0.3854 \ (\pm 9\% \ pdf)$
120	$1.094~(\pm 7\% ~{\rm pdf})$	170	$0.3444~(\pm 10\%~{\rm pdf})$
125	$0.9669~(\pm 7\% \text{ pdf})$	175	$0.3097 \ (\pm 10\% \ \mathrm{pdf})$
130	$0.8570 \ (\pm 8\% \ pdf)$	180	$0.2788 \ (\pm 10\% \ \mathrm{pdf})$
135	$0.7620 \ (\pm 8\% \ pdf)$	185	$0.2510~(\pm 10\% \text{ pdf})$
140	$0.6794 \ (\pm 8\% \ pdf)$	190	$0.2266 \ (\pm 11\% \ pdf)$
145	$0.6073 \ (\pm 8\% \ pdf)$	195	$0.2057 \ (\pm 11\% \ \mathrm{pdf})$
150	$0.5439~(\pm 9\% \text{ pdf})$	200	$0.1874 \ (\pm 11\% \ pdf)$
155	$0.4876 \ (\pm 9\% \ pdf)$	—	_

[+7%,-11%] scale error

Now 6% lower than used in 2008 Tevatron exclusion for M_H=150-170 GeV PDF systematic error factor of 2 *larger*: ±10%

Central value shift but not PDF systematic shift accounted for in newest analysis; becomes one of the largest systematic errors

Numerical results for LHC

M_H	$\sigma_{\rm min}^{NNLO}$	$\sigma_{\rm ref}^{NNLO}$	$\sigma_{\rm max}^{NNLO}$	σ_{\min}^{NNLL}	$\sigma_{\rm ref}^{NNLL}$	$\sigma_{\rm max}^{NNLL}$
100	47.71	53.30	59.02	51.22	56.36	61.28
110	41.08	45.77	50.55	44.12	48.41	52.47
120	35.81	39.80	43.85	38.46	42.10	45.52
130	31.52	34.96	38.45	33.87	37.00	39.92
140	27.99	30.99	34.02	30.09	32.80	35.32
150	25.05	27.69	30.34	26.94	29.31	31.51
160	22.56	24.90	27.25	24.28	26.37	28.31
170	20.45	22.54	24.64	22.02	23.88	25.59
180	18.65	20.52	22.40	20.08	21.74	23.27
190	17.09	18.79	20.48	18.39	19.90	21.27
200	15.74	17.28	18.83	16.96	18.32	19.55
210	14.57	15.98	17.39	15.70	16.94	18.07
220	13.55	14.85	16.14	14.60	15.74	16.78
230	12.65	13.86	15.05	13.65	14.70	15.65
240	11.87	12.99	14.10	12.81	13.78	14.67
250	11.19	12.24	13.28	12.08	12.99	13.81
260	10.60	11.58	12.55	11.45	12.30	13.06
270	10.09	11.01	11.93	10.90	11.70	12.42
280	9.648	10.53	11.39	10.42	11.18	11.86
290	9.270	10.11	10.94	10.02	10.74	11.39
300	8.960	9.773	10.57	9.696	10.38	11.00

011

m_H	$\sigma^{\rm best}$	Scale	PDF
100	74.58	$^{+7.18}_{-7.54}$	$^{+1.86}_{-2.45}$
110	63.29	$^{+5.87}_{-6.20}$	$^{+1.54}_{-2.02}$
120	54.48	+4.88 -5.18	$^{+1.30}_{-1.70}$
130	47.44	$^{+4.12}_{-4.38}$	$^{+1.12}_{-1.45}$
140	41.70	+3.47 -3.75	$^{+0.97}_{-1.25}$
150	36.95	$^{+3.02}_{-3.24}$	$^{+0.85}_{-1.10}$
160	32.59	$^{+2.60}_{-2.79}$	$^{+0.73}_{-0.97}$

m_H	σ^{best}	Scale	PDF		
170	28.46	$^{+2.22}_{-2.39}$	$^{+0.65}_{-0.84}$		
180	25.32	$^{+1.92}_{-2.08}$	$^{+0.58}_{-0.74}$		
190	22.63	$^{+1.68}_{-1.83}$	$^{+0.52}_{-0.66}$		
200	20.52	$^{+1.49}_{-1.63}$	+0.48 -0.60		
210	18.82	$^{+1.34}_{-1.47}$	$^{+0.45}_{-0.55}$		
220	17.38	$^{+1.22}_{-1.33}$	$^{+0.42}_{-0.51}$		
230	16.15	$^{+1.11}_{-1.22}$	+0.39 -0.48		

m_H	σ^{best}	Scale	PDF
240	15.10	$^{+1.03}_{-1.12}$	$^{+0.37}_{-0.45}$
250	14.19	$^{+0.95}_{-1.04}$	$^{+0.36}_{-0.43}$
260	13.41	$^{+0.88}_{-0.97}$	$^{+0.35}_{-0.41}$
270	12.74	$^{+0.83}_{-0.91}$	+0.33 -0.39
280	12.17	$^{+0.78}_{-0.86}$	+0.33 -0.38
290	11.71	$^{+0.74}_{-0.82}$	$^{+0.32}_{-0.37}$
300	11.34	$^{+0.71}_{-0.78}$	$^{+0.32}_{-0.36}$

Increase of 25% at low M_H; 10% at higher masses

de Florian, Grazzini 2009

Numerical results

Destructive interference with top contribution; reaches -8% at Tevatron, -3% at LHC

W.Y. Keung, FP 2009

Quark-mass effects on pT

Study p_T dependence of other deviations from common $m_t \rightarrow \infty$ approximation: finite top mass and b quarks

Relevant for $H \rightarrow \gamma \gamma$, WW analyses that select high p_T Abdullin et al.; Mellado et al.

W.Y. Keung, FP 2009

Conclusions

- * Precision prediction for Higgs production at hadron colliders with EW+QCD corrections complete
- * Updated cross section 5-6% *lower* then Tevatron used in 2008 exclusion
- * PDF systematic error factor of 2 *larger*; effect on Tevatron exclusion limits?
- * EW effects at high Higgs pT can reach -8% destructive interference; deviations from infinite top mass approximation can reach -30%