The phenomenology of the U(1) Phantom Sector of the Standard Model

Dr Terrance Figy

Institute for Particle Physics Phenomenology Durham University

Collider Physics 2009: Joint Argonne & IIT Theory Institute May 21, 2009

In collaboration with A. Dedes, S. Hoche, F. Krauss and T. E. J. Underwood, JHEP 0811 (2008) 036 [arXiv:0807.4666 [hep-ph]].

(1) U(1) Phantom Model

T. Figy (IPPP)

2 The LEP search

T. Figy (IPPP)

2 The LEP search

• Minimal Lepton Number Conserving Phantom Sector

- Minimal Lepton Number Conserving Phantom Sector
- "Phantom" \rightarrow singlet under the Standard Model gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$

- Minimal Lepton Number Conserving Phantom Sector
- "Phantom" \rightarrow singlet under the Standard Model gauge group $SU(3)_c \times SU(2)_L \times U(1)_Y$
- Simple model leading to interesting phenomenology
 - Small neutrino masses
 - Leptogenesis
 - Invisible Higgs boson decays

- Just 2 openings in the SM for renormalisable operators coupling $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge singlet to SM fields ¹
- Higgs mass term: $H^{\dagger}H$
- Lepton-Higgs Yukawa interaction: $\overline{L}\widetilde{H}$
- What would happen if we filled in the gaps?
- But, no evidence for B L violation yet, so could try to build a B – L conserving model
- Will try to be "natural" in the 't Hooft and the aesthetic sense couplings either $\mathcal{O}(1)$ or strictly forbidden

T. Figy (IPPP)

Pheno of the U(1) Phantom SM

- Augment the SM with two $SU(3)_c \times SU(2)_L \times U(1)_Y$ singlet fields
 - a complex scalar Φ
 - a Weyl fermion s_R

$$-\mathcal{L}_{link} = \left(h_{\nu}\bar{l}_{L}\cdot\tilde{H}s_{R} + \text{H.c.}\right) - \eta H^{\dagger}H\Phi^{*}\Phi$$

 $ilde{H}=i\sigma_2 H^*$, $h_
u$ and η will be $\mathcal{O}(1)$, $s_{\!R}$ carries lepton number L=1.

• But, this model is no good – neutrinos would have large, electroweak scale masses

• Solution: Postulate the existence of a purely gauge singlet sector; add ν_R and s_L ²

$$-\mathcal{L}_{p} = h_{p} \Phi \bar{s}_{L} \nu_{R} + M \bar{s}_{L} s_{R} + \text{H.c.}$$

• Forbid other terms by imposing a phantom sector global $U(1)_D$ symmetry, such that

$$u_R
ightarrow e^{ilpha}
u_R \ , \ \Phi
ightarrow e^{-ilpha} \Phi$$

transform non-trivially

• If we require small Dirac neutrino masses this is the simplest choice for the phantom sector

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{link} + \mathcal{L}_{p}$$

Small effective Dirac neutrino masses –Dirac See-Saw

• Low energies:

$$\mathcal{L}_{
u} = rac{(ar{L} \cdot ilde{H})(\Phi \cdot
u_R)}{\Lambda}$$

Essentially the Froggatt-Nielsen mechanism! ³

T. Figy (IPPP)

Pheno of the U(1) Phantom SM

³C. D. Froggatt and H. B. Nielsen, NPB147(1979)277

$$V(H,\Phi) = \mu_H^2 H^* H + \mu_\Phi \Phi^* \Phi + \lambda_H (H^* H)^2 + \lambda_\Phi (\Phi^* \Phi)^2 - \eta H^* H \Phi^* \Phi$$

- After spontateous symmetry breaking of $U(1)_D$, the field Φ develops a vev, which through the link η -term, forces the Higgs field H to develop a vev, triggering $SU(2)_L \times U(1)_Y$ symmetry breaking.
- Expanding around the minima

$$H = v + rac{1}{\sqrt{2}}(h + iG)$$
, $\Phi = \sigma + rac{1}{\sqrt{2}}(\phi + iJ)$

- We have
 - the Goldstone bosons: G (eaten as usual) and J
 - h and ϕ mix (due to the η term) and become two massive Higgs bosons H_1 and H_2

niversity of Durba

$$\begin{pmatrix} H_1 \\ H_2 \end{pmatrix} = O\begin{pmatrix} h \\ \phi \end{pmatrix} \text{ with } O = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \text{ and the mixing angle}$$

$$\tan 2\theta = \frac{\eta v \sigma}{\lambda_{\Phi} \sigma^2 - \lambda_H v^2}$$

- The limits $v \ll \sigma$ and $\sigma \ll v$ both lead to the SM with an isolated hidden sector
- These limits need an unnaturally small *η*, and would present problems with baryogenesis and small neutrino masses.
- A 'natural' choice of parameters (with e.g. $\eta \sim 1$) would lead to

$$an heta \sim 1$$
 , $an eta \equiv {f v}/\sigma \sim 1$

T. Figy (IPPP)

University of Durha

Stability and Triviality Bounds

- Triviality: Parameters λ_H, λ_Φ and η are required to be perturbative up to a certain scale Λ_T ≫ v.
- Vacuum Stability: Potential is bound from below up to a scale $\Lambda_V \gg v$.
- After solving 1-loop RGEs, we can plot the maximum scale up to which our effective theory satisfies the above constraints.

 $\Lambda_{\mathcal{T}} \; , \Lambda_{\mathcal{V}} \lesssim 10^{16} {\rm GeV}$

 $4\lambda_H(Q)\lambda_\Phi(Q) > \eta(Q)^2$

for all $Q \lesssim \Lambda_V$.

Stability and Triviality Bounds

Feynman Rules: Trilinear Couplings

Look at the number of visible events $(H \rightarrow YY)$ compared to the number expected in the SM

$$\mathcal{R}_i^2 \equiv \frac{\sigma(e^+e^- \to H_i X) \operatorname{Br}(H_i \to YY)}{\sigma(e^+e^- \to h X) \operatorname{Br}(h \to YY)}$$

Define a similiar parameter for invisible events

$$\mathcal{T}_i^2 \equiv \frac{\sigma(e^+e^- \to H_i X)}{\sigma(e^+e^- \to h X)} \operatorname{Br}(H_i \to \mathcal{J}\mathcal{J})$$

$$\begin{aligned} \mathcal{T}_1^2 &= \cos^2\theta \ - \ \mathcal{R}_1^2 \ , \\ \mathcal{T}_2^2 &= \sin^2\theta \ - \ \mathcal{R}_2^2 \ . \end{aligned}$$

In the LEP search region, $m_{H_2} < m_{H_1} \lesssim 115$ GeV

$$egin{aligned} \mathcal{R}_1^2 &\simeq & \left[(1+ an^2 heta) \Big(1+rac{1}{12}\,rac{m_{H_1}^2}{m_b^2}\, an^2 heta\, an^2\,eta\, \Big)
ight]^{-1}\,, \ \mathcal{R}_2^2 &\simeq & \left[(1+ an^2 heta) \Big(1+rac{1}{12}\,rac{m_{H_2}^2}{m_b^2}\, an^2 heta\, an^2\,eta\, \Big)
ight]^{-1}\,. \end{aligned}$$

LEP could have missed a partially invisible Higgs boson

2.3σ LEP Higgs search excess

2.3σ LEP Higgs search excess

Visible events

$$\mathcal{R}_{i}^{2} \equiv \frac{\sigma(pp \to H_{i} X) \operatorname{Br}(H_{i} \to YY)}{\sigma(pp \to h X) \operatorname{Br}(h \to YY)}$$

Invisible events

$$\mathcal{T}_i^2 \equiv \frac{\sigma(pp \to H_i X)}{\sigma(pp \to h X)} \operatorname{Br}(H_i \to \mathcal{J}\mathcal{J})$$

Expectations for the LHC

- Potential nightmare scenario
- No-lose theorem: If experiments can discover a Higgs boson over the whole range of R²_i down to 0.25 or over the whole range of T²_i down to 0.25 then at least one Higgs boson should be found.

$$\begin{array}{rll} \mathrm{B1:} & m_{H_1} = 68 \; \mathrm{GeV} & , & m_{H_2} = 114 \; \mathrm{GeV} & , \\ & & \tan \theta = 2 & , & \tan \beta = 1 \; . \end{array}$$

an heta = 1 tan eta = 1

Benchmark	$m_{H_1}(\text{GeV})$	$m_{H_2}(\text{GeV})$	
B2	112	130	
B3	140	165	
B4	160	190	
B5	185	190	

The implementation of the U(1) Phantom Model into SHERPA

- $\bullet\,$ Both trilinear and quadrilinear couplings have been implemented into the MC SHERPA 4
- Model parameters: $\tan \theta$, $\tan \beta$, m_{H_1} , and m_{H_2}
- Higgs effective couplings (e.g. *H_igg*)
- 2 body decays of the Higgs bosons *H_i* are generated automatically

⁴ T. Gleisberg, S. Hoche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert and J. Winter, JHEP 0902 (2009) 007_{embl} of Durb [arXiv:0811.4622 [hep-ph]]

$pp \rightarrow \ell^+ \ell^- + \not\!\!\!E_T$

- Signal: $pp \rightarrow ZH \rightarrow \ell^+ \ell^- \mathcal{JJ}$
- Backgounds: ZZ, WW, WZ, and Z

Selection cuts

• one lepton pair of the same kind with opposite charges, where each lepton individually satifies $p_{T,\ell} > 15 \text{ GeV}$ and $|\eta_{\ell}| < 2.5$;

•
$$|M_{\ell\bar{\ell}} - M_Z| \leqslant 10 \text{ GeV};$$

- a veto on jets with $p_T > 20~{
 m GeV}$, $|\eta| < 4.9$;
- a veto on *b*-jets with $p_T > 15~{
 m GeV}$, $|\eta| < 4.9;$
- $m_T > 200 \text{ GeV}$, where $m_T = \sqrt{2 p_T^{\ell \bar{\ell}}} \not\!\!\!/ p_T (1 \cos \phi);$
- $\Delta R_{\ell \bar{\ell}} < 1.75;$

University of Durhar

ZH production

ZH production

ZH production

Signal and Background Cross sections

• The most dangerous backgrounds are ZZ and WZ production.

• After cuts, $S/B \approx 1/8$ up to 1

$pp \rightarrow jj + \not \!\! E_T$

- Signal: $pp \rightarrow Hjj \rightarrow JJjj$
- Backgrounds: Zjj, Wjj, tt

Vector Boson Fusion

Selection cuts

Two tagging jets with

•
$$p_{T,j} > 40$$
 GeV, $|\eta_j| < 5$,

•
$$|\eta_{j_1} - \eta_{j_2}| > 5, \ \eta_{j_1} \cdot \eta_{j_2} < 0,$$

•
$$m_{j_1 j_2} > 1700 \,\, {
m GeV}$$
 ,

•
$$\Delta \phi_{j_1 j_2} = |\phi_{j_1} - \phi_{j_2}| < 1$$
,

- missing transverse momentum, $p_T > 100$ GeV;
- no identified lepton, i.e. no lepton with $p_T^{e,\mu} > 5$, 6 GeV in $|\eta_l| < 2.5$,
- a central jet veto, i.e. no jets with $p_T > 20$ GeV, $\min\{\eta_{j_1}, \eta_{j_2}\} < \eta < \max\{\eta_{j_1}, \eta_{j_2}\}.$

University of Durham

Additional Selection cuts

•
$$|\eta_3^*| = \left|\eta_{j_3} - \frac{1}{2}(\eta_{j_1} + \eta_{j_2})\right| > 1.5,$$

•
$$\Delta \phi_{j_1,j_3}, \ \Delta \phi_{j_2,j_3} < 1.25.$$

Vector Boson Fusion

29 / 31

May 21, 2009

Signal and Background Cross sections

	Z+jets (QCD+EW)	W+jets (QCD+EW)	tī
$\sigma_{ m tot}^{ m gen}$ [nb]	9.41	51.8	0.145
$\sigma_{\rm eff}$ [fb]	10.7	7.45	0.0621

	<i>B</i> ₁	<i>B</i> ₂	<i>B</i> ₃	<i>B</i> ₄	<i>B</i> ₅
$\sigma_{ m tot}^{ m gen}$ [pb]	5.46	4.46	2.99	2.06	1.32
$\sigma_{ m eff}$ [fb]	17.0	17.5	14.4	11.2	7.9

• $S/B \approx 1/3$ up to 1

University of Durham

- NGBs lead to the dilution and potential invisibility of the expected SM signal.
- LEP excludes the minimal phantom sector case where both Higgs bosons have masses $m_H \lesssim 85$ GeV irrespective of their decay modes.
- Experimentally allowed regions exist where one Higgs boson is much lower than the SM Higgs boson exclusion limit $m_{H_1} = 68$ GeV, and the other just at the limit, $m_{H_2} = 114$ GeV.
- In each of the 5 benchmark scenarios, fairly good S/B ratios are found for the LHC.

