

ILLINOIS INSTITUTE OF TECHNOLOGY

Searches for the Standard Model Higgs Boson Matthew Herndon, University of Wisconsin Madison Collider Physics 2009, ANL & IIT

Electroweak Symmetry Breaking

- An experimentalists conception
- Consider the Electromagnetic and the Weak Forces
- Coupling at low energy: EM: $\sim \alpha$, Weak: $\sim \alpha/(M_{W,Z})^2$
 - Fundamental difference in the coupling strengths at low energy, but apparently governed by the same dimensionless constant
 - Difference due to the massive nature of the W and Z bosons
- SM postulates a mechanism of electroweak symmetry breaking via the Higgs mechanism
 - Results in massive vector bosons and mass terms for the fermions
 - Directly testable by searching for the Higgs boson

A primary goal of the Tevatron and LHC

Electroweak Constraints

- Higgs couples strongly to massive particles
 - Introduces corrections to W and top masses sensitivity to Higgs mass

Electroweak Constraints

- Higgs couples strongly to massive particles
 - Introduces corrections to W and top masses sensitivity to Higgs mass

Colliders and Experiments

- Tevatron: 2TeV pp⁻collider with two general purpose detectors: CDF, DØ
 Collider Run II Integrated Luminosity
 - Excellent lepton Id
 - Good to excellent calorimeters for jet and MET reconstruction
 - Excellent silicon detectors
 for b jet identification
 - Higgs analysis uses full capabilities of the detectors

Given a SM Higgs

Tevatron: Higgs mass exclusions or evidence

Colliders and Experiments

- Tevatron: 2TeV pp⁻collider with two general purpose detectors: CDF, DØ
 Collider Run II Integrated Luminosity
 - Excellent lepton Id
 - Good to excellent calorimeters for jet and MET reconstruction
 - Excellent silicon detectors for b jet identification
 - Higgs analysis uses full capabilities of the detectors

Given a SM Higgs

Tevatron: Higgs mass exclusions or evidence

LHC: Observation over full mass range. Study Higgs properties

Tools: Triggers and Leptons

- Extract handful of Higgs events from a background 11 orders of magnitudes larger
- Higgs couples, decays to heavy particles
- Primary triggers: High $p_T e$ and μ
 - Jet+MET triggers: modes with no charged leptons, supplement lepton triggers for gaps in coverage
 - Dedicated τ triggers:
 - track+MET+Cal Energy
- Lepton Id
 - Optimize lepton Id on large samples of ^{10¹⁰} W, Z bosons

Maximizing Higgs acceptance

M. Herndon, Collider Physics May 2009

Tools: b quark jets SecVtx Tag Efficiency for Top b-Jets

0.1

0.2

- b jet tagging
- et tagging CDF: Secondary Vertex tagger, jet probability tagger, NN flavor separators 0.2
 - NN tagger soon +10% efficiency
 - DØ: NN tagger with multiple operating points

40-70% Efficient with 0.3-5% mistag rate

- Jet energy measurement combining calorimeter and tracking information
- NN based jet energy corrections, constrained kinematic fits

Tight SecVtx

CDF SV tagger

Top MC scaled to match data

Only b-jets with E_T>15 GeV

Loose SecVtx

NN

JLIP

jet n

Tools: Backgrounds

- SM processes create a variety backgrounds to Higgs detection
- Discovery analyses: WW, WZ, ZZ, single top, and from run 1 top pairs
- Total and differential cross section measurements
 - QCD dijets, W+c, W+b, Z+b
- Critical to Higgs
 - Some backgrounds cannot be predicted using MC. QCD with fake lepton signature
 - Constrain background predictions
 - Testing ground for tools and techniques
 - Control regions

Higgs search built on a foundation of the entire collider physics program

CDF Run II Preliminary - 1.9/fb

LF contribution Summed contribution

b = 71.3 ± 4.7(stat) ± 6.4(syst) %

bottom contribution charm contribution

Data

Vertex Mass Fit

20

SM Higgs Production and Decay

- Take advantage of large $gg \rightarrow H$ production cross section, ZZ in progress
- Low Mass: H→bb, QCD bb background overwhelming
 - Use associated production with W or Z for background discrimination
 - WH→Ivbb, ZH→vvbb (MET+bb), ZH→Ilbb
 - Also: VBF Production, VH \rightarrow qqbb, H \rightarrow $\tau\tau$ (with 2jets), H \rightarrow $\gamma\gamma$, VH->VWW, ttH

SM Higgs: VH→METbb

ZH→vvbb, WH→Ivbb(I not detected) - signature: MET and b jets

- Primary Bkg: QCD b jets and mistagged light quark jets with false MET
- Key issue: Building a model of the QCD background
 - Shape from 0 and 1 b tagged data samples with tag and mistag rates applied

Use of track missing p_T to define control regions and suppress backgrounds Uses of H1 Jet Algorithm combining tracking and calorimeter information(CDF) 3 jet events including W→τμ acceptance(CDF) DØ also performs a dedicated W→τμ Results at mH = 115GeV: 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limi t
CDF NN	2.1	7.6	5.6	6.9
DØ BDT	2.1	3.7	8.4	7.5

SM Higgs: VH→METbb

■ $ZH \rightarrow vvvbb$, $WH \rightarrow Ivbb(I not detected) - signature: MET and b jets$

- Primary Bkg: QCD b jets and mistagged light quark jets with false MET
- Key issue: Building a model of the QCD background
 - Shape from 0 and 1 b tagged data samples with tag and mistag rates applied

Use of track missing p_T to define control regions and suppress backgrounds Uses of H1 Jet Algorithm combining tracking and calorimeter information(CDF) 3 jet events including W→τμ acceptance(CDF) DØ also performs a dedicated W→τμ Results at mH = 115GeV: 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limi t
CDF NN	2.1	7.6	5.6	6.9
DØ BDT	2.1	3.7	8.4	7.5

SM Higgs: WH→lvbb

- WH \rightarrow Ivbb signature: high pT lepton, MET and b jets
 - Backgrounds: W+bb, W+qq(mistagged), single top, Non W(QCD)
 - Single top: yesterday's discovery is today's background
 - Key issue: estimating W+bb background
 - Shape from MC with normalization from data control regions compare MCs for sys

Innovations: 20% acceptance from isolated tracks(CDF) Combination of NN and ME+BDT(CDF), ME+NN(DØ)

Results at mH = 115GeV: 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limi t
CDF NN+ME+BDT	2.7	8.4	4.8	5.8
DØ ME+NN new	2.7	13.3	6.7	6.4

SM Higgs: WH→lvbb

- WH \rightarrow Ivbb signature: high pT lepton, MET and b jets
 - Backgrounds: W+bb, W+qq(mistagged), single top, Non W(QCD)
 - Single top: yesterday's discovery is today's background
 - Key issue: estimating W+bb background
 - Shape from MC with normalization from data control regions compare MCs for sys

Innovations: 20% acceptance from isolated tracks(CDF) Combination of NN and ME+BDT(CDF), ME+NN(DØ)

Results at mH = 115GeV: 95%CL Limits/SM

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limi t
CDF NN+ME+BDT	2.7	8.4	4.8	5.8
DØ ME+NN new	2.7	13.3	6.7	6.4

Worlds most sensitive low mass Higgs search - Still a long way to go!

Low Mass Higgs Searches

We gain our full sensitivity by searching for the Higgs in every viable production and decay mode

Analysis	Lum (fb ⁻¹)	Higgs Events	Exp. Limit	Obs. Limit
CDF NN: ZH→llbb new	2.7	2.2	9.9	7.1
DØ BDT new	4.2	3.1	8.0	9.1
CDF NN: VH→METbb	2.1	7.6	5.6	6.9
DØ BDT	2.1	3.7	8.4	7.5
CDFComb: WH→lvbb	2.7	8.4	4.8	5.8
DØ ME+NN new	2.7	13.3	6.7	6.4

- Sensitivity to 38 Higgs events
- A new round of analysis, 2x data and 1.5x improvements will bring us to SM sensitivity.

Analysis: Limits @ 160/115 GeV	Exp. Limit	obs. Limit
DØ WH→WWW	10	18
CDF WH→WWW	19	24
DØ H→γγ	18	16
CDF H→ττ	25	31
DØ inclusive τ	28	29
CDF VH→qqbb	37	37
DØ ttH	45	64

SM Higgs: H→WW

• H \rightarrow WW \rightarrow IvIv - signature: Two high p_T leptons and ME I

- Primary backgrounds: WW and top in di-lepton decay channel
- Key issue: Maximizing lepton acceptance
- Innovations: Inclusion of acceptance from VH and VBF

Combination of ME and NN approaches(CDF), same sign leptons

SM Higgs: H→WW

- signature
- Example: CDF: Inclusive H→WW analysis: IvIvMET signature
- Optimize in jet bins & lepton charge configuration(CDF), Lepton type(DØ)

Channel	Signal	Primary background	Primary discriminants
0 Jets	gg→H	WW, DY	Δφ/R,MET,ME
1 Jet	gg→H, VH, VBF	WW, DY	Δφ/R,MET,m _{TH}
2+ Jets	gg→H, VH, VBF	Top dilepton	MET,HT,m _{TH}
1+ Jets SS lepton	VH	W+Jets	Good lepton ID, MET

- Control regions
 - Low MET: Understand DY, lepton Id efficiencies
 - Large MET aligned along jet of lepton: Understand false MET
 - SS: Understand false leptons
 - High WW ME likelihood: measure WW cross section
 - B tagged jets, understand top dilepton

$\sum_{\mathsf{M}} \mathsf{SM} \mathsf{Higgs:} \mathsf{H} \to \mathsf{WW}$

- Example: CDF: Inclusive H→WW analysis: IvIvMET signature
- Optimize in jet bins & lepton charge configuration(CDF), Lepton type(DØ)

Control regions

- Low MET: Understand DY, lepton Id efficiencies
- Large MET aligned along jet of lepton: Understand false MET
- SS: Understand false leptons
- High WW ME likelihood: measure WW cross section
- B tagged jets, understand top dilepton

0000

SM Higgs: H→WW

■ Example: CDF: Inclusive H→WW analysis: IvIvMET - signature

Optimize in jet bins & lepton charge configuration(CDF), Lepton type(DØ)

- Control regions
 - Low MET: Understand DY, lepton Id efficiencies
 - Large MET aligned along jet of lepton: Understand false N[®]
 - SS: Understand false leptons
 - High WW ME likelihood: measure WW cross section
 - B tagged jets, understand top dilepton

0000

$\sum_{m} SM Higgs: H \rightarrow WW$

■ Example: CDF: Inclusive H→WW analysis: IvIvMET - signature

CDF Run II Preliminary

Optimize in jet bins & lepton charge configuration(CDF), Lepton type(DØ)

- Control regions
 - Low MET: Understand ⁸/₈
 - Large MET aligned alo
 - SS: Understand false le
 - High WW ME likelihooc
 - B tagged jets, understa

 $L = 3.6 \text{ fb}^{-1}$

0000

$\frac{1}{100}$ SM Higgs: H \rightarrow WW

■ Example: CDF: Inclusive H→WW analysis: IvIvMET - signature

Optimize in jet bins & lepton charge configuration(CDF), Lepton type(DØ)

0000

SM Higgs Combined Limits

- Limits calculation and combination
 - Using Bayesian and CLs(DØ) methodologies.
 - Incorporate systematic uncertainties using pseudo-experiments (shape and rate included) (correlations taken into account between experiments)
 - Backgrounds can be constrained in the fit

CL Limit / SM

95%

SM Higgs Combined Limits

- Limits calculation and combination
 - Using Bayesian and CLs(DØ) methodologies.
 - Incorporate systematic uncertainties using pseudo-experiments (shape and rate included) (correlations taken into account between experiments)
 - Backgrounds can be constrained in the fit

H→WW Some Details

- Previous NNLL cross section: S. Catani, D. de Florian, M. Grazzini, and P. Nason, JHEP 07, 028 (2003), hep-ph/0306211 CTEQ5L
 - Include two loop EW diagrams: U. Aglietta, B. Bonciani, G. Degrassi,
 - 2009 MSTW PDFs

and A. Vivini (2006), hep-ph/0610033.

Martin Sterling Thorne Watt hep-ph/0901.0002

- Integrated together into the latest state of the art predictions
 - Latest gluon PDF, full treatment of EW contribution, better treatment of b quark masses C Anastasiou, R Boughezal, F Petriello, hep-ph/0811.3458

D. de Florian, M. Grazzini, hep-ph/0901.2427

Example systematic table

- Rates and shapes considered
- Shape: Scale variations, ISR, gluon pdf, Pythia vs. NNL0 kinematics, DY pt distribution, jet energy scale, lepton fake rate shapes: for signal and backgrounds. Included in limit setting if significant.

	$CDF: H \rightarrow WW \rightarrow t^{-}t^{+} + 0$ Jets Analysis										
Uncertainty Source	WW	WZ	ZZ	$t\bar{t}$	DY	$W\gamma$	W+jet	$gg \rightarrow H$	WH	ZH	VBF
Cross Section											
Scale								10.9%			
PDF Model								5.1%			
Total	10.0%	10.0%	10.0%	15.0%	5.0%	10.0%		12.0%			
Acceptance											
Scale (leptons)								2.5%			
Scale (jets)								4.6%			
PDF Model (leptons)	1.9%	2.7%	2.7%	2.1%	4.1%	2.2%		1.5%			
PDF Model (jets)								0.9%			
Higher-order Diagrams	5.5%	10.0%	10.0%	10.0%	5.0%	10.0%					
Missing Et Modeling	1.0%	1.0%	1.0%	1.0%	20.0%	1.0%		1.0%			
Conversion Modeling						20.0%					
Jet Fake Rates											
(Low S/B)							21.5%				
(High S/B)							27.7%				
MC Run Dependence	3.9%			4.5%		4.5%		3.7%			
Lepton ID Efficiencies	2.0%	1.7%	2.0%	2.0%	1.9%	1.4%		1.9%			
Trigger Efficiencies	2.1%	2.1%	2.1%	2.0%	3.4%	7.0%		3.3%			
Luminosity	5.9%	5.9%	5.9%	5.9%	5.9%	5.9%		5.9%			

Treatment developed jointly by CDF and DØ

SM Higgs Combination

Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹

SM Higgs Combination

Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹

SM Higgs Combination Exp. 1.1 @ 160/165, 1.4 @ 170 GeV

SM Higgs Combination Exp. 1.1 @ 160/165, 1.4 @ 170 GeV

SM Higgs Combination

Result verified using two independent methods(Bayesian/CLs)

M Higgs(GeV)	155	160	165	170	175
Method 1: Exp	1.5	1.1	1.1	1.4	1.6
Method 1: Obs	1.4	0.99	0.86	0.99	1.1
Method 2: Exp	1.5	1.1	1.1	1.3	1.6
Method 2: Obs	1.3	0.95	0.81	0.92	1.1

95%CL Limits/SM

M. Herndon, Collider Physics May 2009

SM Higgs Combination

Result verified using two independent methods(Bayesian/CLs)

 We exclude at 95% C.L. the production of a SM Higgs boson of 160-170 GeV

Discovery

- Discovery projections: chance of 3σ or 5σ discovery
 - Two factors of 1.5 improvements examined relative to summer Lepton Photon 2007 analyses, low and high mass
 - First 1.5 factor achieved for summer ICHEP 2008 analysis
 - Result: exclusion at m_H = 170 GeV. Already extended to 160-170 GeV
 - Expect large exclusion(or evidence): Full Tevatron dataset/improvements CDF+D0, m_H=115 GeV
 CDF+D0, m_H=160 GeV

LHC Prospects: SM Higgs

- LHC experiments: Potential to observe a SM Higgs at 5σ over a large mass region, 95% CL with 200pb⁻¹ @10TeV at high mass
 - Observation: $gg \rightarrow H \rightarrow \gamma\gamma$, VBF $H \rightarrow \tau\tau$, $H \rightarrow WW \rightarrow I_VI_V$, and $H \rightarrow ZZ \rightarrow 4I$
 - Possibility of measurement in multiple channels
 - Properties W, Z coupling in associated production
 - Yukawa top coupling in ttH
 - Spin in diffractive production

All key channels explored

Conclusions

- The Higgs boson search is in its most exciting era ever
 - The Tevatron experiments have achieved sensitivity to the SM Higgs boson production cross section
 - With the advent of the LHC we will have the potential to observe the SM Higgs boson and study it's properties.
- We exclude at 95% C.L. the production of a SM Higgs boson of 160-170 GeV
 - Expect large exclusion, or evidence, with full Tevatron data set and improvements

SM Higgs Excluded: m_H = 160-170 GeV

SM Higgs: ZH→llbb

- ZH→IIbb signature: two leptons and b jets
 - Primary background: Z + b jets
 - Key issue: Maximize lepton acceptance and b tagging efficiency

Innovations Extensive use of loose b tagging(DØ

NN)

SM Higgs: ZH→llbb

- ZH→IIbb signature: two leptons and b jets
 - Primary background: Z + b jets
 - Key issue: Maximize lepton acceptance and b tagging efficiency

Innovations Extensive use of loose b tagging(DØ

NN)

Other SM Higgs Searches

- CDF and DØ are performing searches in every viable mode
 - CDF: VH→qqbb: 4 Jet mode.
 - CDF: $H \rightarrow \tau \tau$ with 2jets
 - Simultaneous search for Higgs in VH, VBF and gg→H production modes
 - Interesting benchmark for LHC
 - DØ: VH,VBF,gg→H→ττjj+WH→τνbb
 - Inclusive tau search
 - DØ: ttH
 - Leverages strong coupling to top

Analysis: Limits at 160 and 115GeV	Exp. Limit	obs. Limit
CDF H → ττ	25	31
DØ Inclusive τ new	28	29
CDF VH→qqbb	37	37
DØ ttH	45	64

BSM/SM Higgs Searches

- At lower mass large BR(H→γγ) ~10%
 for Fermiophobic Higgs
- SM search also sensitive at low mass
- Key issue: understanding QCD
- CDF has not yet calculated SM limits
- WH→WWW
 - Strong sensitivity as both a SM and a fermiophobic Higgs search
 - Same sign dilepton signature
 - SM: sensitive at high and medium mass
 - Now included in inclusive CDF H→WW search

Analysis: Limits at 115/160 GeV	Exp. Limit	obs. Limit
DØ H→γγ new	18	16
CDF WH→WWW new	19	24
DØ WH→WWW new	10	18

Projections

- Goals for increased sensitivity achieved
 - Goals set after 2007 Lepton Photon conference
 - First stage target was sensitivity for possible exclusion at high mass
 A similar magnitude improvement factor target was set at low mass
 - Second stage goals in progress
 - B tag, jet energy resolution, tau modes, ZZ

Projections

- Goals for increased sensitivity achieved
 - Goals set after 2007 Lepton Photon conference
 - First stage target was sensitivity for possible exclusion at high mass
 A similar magnitude improvement
 factor target was set at low mass
 - Second stage goals in progress
 - B tag, jet energy resolution, tau modes, ZZ

