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Measurements @ LHC

By definition BSM is difference between true 
distributions in nature and SM predictions

!BSM = !true - !SM

Goal of LHC is to determine the mechanism of EW 
symmetry breaking

Main question, is the SM sufficient, or do we need 
physics beyond the standard model (BSM)
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!meas = d!true ! detector

Problem:
Measured distributions are convolutions of true 

distributions with detector effects

Measurements @ LHC

For a meaningful comparison between !meas and SM 
predictions, need to be able to calculate

!pred = d!SM ! detector
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Why parton showers?

Only known way to generate exclusive distributions is 
using parton shower Monte Carlos (Pythia/Herwig)

Detector effects depend on details of the fully 
hadronic events (!+ vs !0, details of jets )

Need d!SM including full hadronization effects

d!SM = (Calc) ! Pythia/Herwig
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In order to use LHC data...

Several processes only available at NLO

Scale dependence only under control starting at NLO

NLO calculations required to get to O(10%) uncertainty

Combine NLO calculations with parton showers

For the perturbative part, NLO calculations are the 
state of the art and should be viewed as mandatory
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Outline

Jet Observables and Monte Carlo

The Parton Shower Algorithm

Generics of combining with fixed order calculations

LO Accuracy

NLO Accuracy

Some details of our calculation

Conclusions
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Jet observables and 
Monte Carlo
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Jet cross sections

Defined with help of jet algorithm

k particles 
in detector

Algorithm n jets 
observedJ("k,"n)

There has been considerable progress over the past few years to include NLO cor-
rections in Monte Carlo programs and combine them with a LL parton shower descrip-
tion citeMC@NLO, POWHEG, etc.. However, most of the current approaches are only able
to include the NLO matrix element with the lowest multiplicity for a given process at a tim,
which we will refer to generically as PS/NLO merging. For example, for a 2 → 2 process,
PS/NLO combines the LO 2 → 2, NLO 2 → 2 and LO 2 → 3 matrix elements with a parton
shower. An extension of PS/NLO was given in Ref. citeGenEvA, by including additional
higher-multiplicity LO matrix elements, effectively combining the features of PS/NLO and
LOn/LL. The NLO cascade constructed in this paper goes significantly further, bringing the
accuracy to full NLOn/LL.

A first attempt to combine NLO matrix elements with different multiplicities with a
parton shower was carried out in Refs. citeNagysoper. The results there essentially amount
to an iteration of the known PS/NLO merging, where the n-body NLO matrix element
only contributes to the n-jet cross section defined in a particular way. However, it does not
contribute to the m-jet cross sections with m < n in the same way the n-body LO matrix
element does, which it should and does in a full NLO cascade. In Ref. citeLonnblad etc
the authors attempt to give a general construction to combine NLO matrix elements with
parton showers. However, we are led to believe that the results presented there are incorrect,
as they do not seem to reduce to a correct PS/NLO expression in the limit of having only
a single NLO matrix element.

In the next section, ... outline of the paper.

2. JET OBSERVABLES AND MONTE CARLO

Jet cross sections measured at collider experiments are defined using jet algorithms which
cluster the individual hadrons observed in the detector into jets. In addition to the choice of
the jet algorithm, the jet cross sections also depend on the various kinematic cuts made in the
experimental analysis. The differential n-jet cross sections can be calculated theoretically
by relating them to partonic cross sections via

dσjet
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσparton
i

dΦ′
i

J(Φ′
i, Φn) . (1)

Here J(Φ′
i, Φn) contains all the information on the used jet algorithm, including the relevant

phase space cuts. It describes if and how a given partonic final state at the phase space
point Φi contributes to the phase space point Φn of the n-jet cross section. The partonic
cross sections σparton

i in Eq. (1) are separately infrared (IR) divergent, but these divergences
cancel in the sum of all contributions due to the KLN theorem, provided the jet algorithm
J(Φ′

i, Φn) is IR safe.
Apart from the simplest examples, the analytic evaluation of Eq. (1) is nearly impossible,

and the essential goal of a Monte Carlo program is to efficiently evaluate Eq. (1) using
numerical techniques. To do so, the partonic cross sections σparton

i are organized into Monte
Carlo cross sections σMC

i which are suitable for numerical evaluation by a variety of Monte
Carlo algorithms. The jet cross sections computed by the Monte Carlo program are then
given by

dσjet,MC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσMC
i

dΦ′
i

J(Φ′
i, Φn) . (2)

3

If jet algorithm is infrared safe, can calculate 
perturbatively
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Jet cross sections

Problem 1:

Each term in sum separately divergent (cancels in sum)

In general can only do this calculation numerically by 
integrating over each term in sum separately

How do we deal with the IR divergences numerically?

There has been considerable progress over the past few years to include NLO cor-
rections in Monte Carlo programs and combine them with a LL parton shower descrip-
tion citeMC@NLO, POWHEG, etc.. However, most of the current approaches are only able
to include the NLO matrix element with the lowest multiplicity for a given process at a tim,
which we will refer to generically as PS/NLO merging. For example, for a 2 → 2 process,
PS/NLO combines the LO 2 → 2, NLO 2 → 2 and LO 2 → 3 matrix elements with a parton
shower. An extension of PS/NLO was given in Ref. citeGenEvA, by including additional
higher-multiplicity LO matrix elements, effectively combining the features of PS/NLO and
LOn/LL. The NLO cascade constructed in this paper goes significantly further, bringing the
accuracy to full NLOn/LL.

A first attempt to combine NLO matrix elements with different multiplicities with a
parton shower was carried out in Refs. citeNagysoper. The results there essentially amount
to an iteration of the known PS/NLO merging, where the n-body NLO matrix element
only contributes to the n-jet cross section defined in a particular way. However, it does not
contribute to the m-jet cross sections with m < n in the same way the n-body LO matrix
element does, which it should and does in a full NLO cascade. In Ref. citeLonnblad etc
the authors attempt to give a general construction to combine NLO matrix elements with
parton showers. However, we are led to believe that the results presented there are incorrect,
as they do not seem to reduce to a correct PS/NLO expression in the limit of having only
a single NLO matrix element.

In the next section, ... outline of the paper.

2. JET OBSERVABLES AND MONTE CARLO

Jet cross sections measured at collider experiments are defined using jet algorithms which
cluster the individual hadrons observed in the detector into jets. In addition to the choice of
the jet algorithm, the jet cross sections also depend on the various kinematic cuts made in the
experimental analysis. The differential n-jet cross sections can be calculated theoretically
by relating them to partonic cross sections via

dσjet
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσparton
i

dΦ′
i

J(Φ′
i, Φn) . (1)

Here J(Φ′
i, Φn) contains all the information on the used jet algorithm, including the relevant

phase space cuts. It describes if and how a given partonic final state at the phase space
point Φi contributes to the phase space point Φn of the n-jet cross section. The partonic
cross sections σparton

i in Eq. (1) are separately infrared (IR) divergent, but these divergences
cancel in the sum of all contributions due to the KLN theorem, provided the jet algorithm
J(Φ′

i, Φn) is IR safe.
Apart from the simplest examples, the analytic evaluation of Eq. (1) is nearly impossible,

and the essential goal of a Monte Carlo program is to efficiently evaluate Eq. (1) using
numerical techniques. To do so, the partonic cross sections σparton

i are organized into Monte
Carlo cross sections σMC

i which are suitable for numerical evaluation by a variety of Monte
Carlo algorithms. The jet cross sections computed by the Monte Carlo program are then
given by

dσjet,MC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσMC
i

dΦ′
i

J(Φ′
i, Φn) . (2)

3
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Jet cross sections

Problem 2:

Partonic calculations calculated in fixed order PT

Presence of large ratios in phase space variables gives 
large logarithmic terms that destroy convergence of PT

How do we sum large logs for all i?

There has been considerable progress over the past few years to include NLO cor-
rections in Monte Carlo programs and combine them with a LL parton shower descrip-
tion citeMC@NLO, POWHEG, etc.. However, most of the current approaches are only able
to include the NLO matrix element with the lowest multiplicity for a given process at a tim,
which we will refer to generically as PS/NLO merging. For example, for a 2 → 2 process,
PS/NLO combines the LO 2 → 2, NLO 2 → 2 and LO 2 → 3 matrix elements with a parton
shower. An extension of PS/NLO was given in Ref. citeGenEvA, by including additional
higher-multiplicity LO matrix elements, effectively combining the features of PS/NLO and
LOn/LL. The NLO cascade constructed in this paper goes significantly further, bringing the
accuracy to full NLOn/LL.

A first attempt to combine NLO matrix elements with different multiplicities with a
parton shower was carried out in Refs. citeNagysoper. The results there essentially amount
to an iteration of the known PS/NLO merging, where the n-body NLO matrix element
only contributes to the n-jet cross section defined in a particular way. However, it does not
contribute to the m-jet cross sections with m < n in the same way the n-body LO matrix
element does, which it should and does in a full NLO cascade. In Ref. citeLonnblad etc
the authors attempt to give a general construction to combine NLO matrix elements with
parton showers. However, we are led to believe that the results presented there are incorrect,
as they do not seem to reduce to a correct PS/NLO expression in the limit of having only
a single NLO matrix element.

In the next section, ... outline of the paper.

2. JET OBSERVABLES AND MONTE CARLO

Jet cross sections measured at collider experiments are defined using jet algorithms which
cluster the individual hadrons observed in the detector into jets. In addition to the choice of
the jet algorithm, the jet cross sections also depend on the various kinematic cuts made in the
experimental analysis. The differential n-jet cross sections can be calculated theoretically
by relating them to partonic cross sections via

dσjet
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσparton
i

dΦ′
i

J(Φ′
i, Φn) . (1)

Here J(Φ′
i, Φn) contains all the information on the used jet algorithm, including the relevant

phase space cuts. It describes if and how a given partonic final state at the phase space
point Φi contributes to the phase space point Φn of the n-jet cross section. The partonic
cross sections σparton

i in Eq. (1) are separately infrared (IR) divergent, but these divergences
cancel in the sum of all contributions due to the KLN theorem, provided the jet algorithm
J(Φ′

i, Φn) is IR safe.
Apart from the simplest examples, the analytic evaluation of Eq. (1) is nearly impossible,

and the essential goal of a Monte Carlo program is to efficiently evaluate Eq. (1) using
numerical techniques. To do so, the partonic cross sections σparton

i are organized into Monte
Carlo cross sections σMC

i which are suitable for numerical evaluation by a variety of Monte
Carlo algorithms. The jet cross sections computed by the Monte Carlo program are then
given by

dσjet,MC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσMC
i

dΦ′
i

J(Φ′
i, Φn) . (2)

3
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Jet cross sections

Problem 3:

How to get expression for large i?

There has been considerable progress over the past few years to include NLO cor-
rections in Monte Carlo programs and combine them with a LL parton shower descrip-
tion citeMC@NLO, POWHEG, etc.. However, most of the current approaches are only able
to include the NLO matrix element with the lowest multiplicity for a given process at a tim,
which we will refer to generically as PS/NLO merging. For example, for a 2 → 2 process,
PS/NLO combines the LO 2 → 2, NLO 2 → 2 and LO 2 → 3 matrix elements with a parton
shower. An extension of PS/NLO was given in Ref. citeGenEvA, by including additional
higher-multiplicity LO matrix elements, effectively combining the features of PS/NLO and
LOn/LL. The NLO cascade constructed in this paper goes significantly further, bringing the
accuracy to full NLOn/LL.

A first attempt to combine NLO matrix elements with different multiplicities with a
parton shower was carried out in Refs. citeNagysoper. The results there essentially amount
to an iteration of the known PS/NLO merging, where the n-body NLO matrix element
only contributes to the n-jet cross section defined in a particular way. However, it does not
contribute to the m-jet cross sections with m < n in the same way the n-body LO matrix
element does, which it should and does in a full NLO cascade. In Ref. citeLonnblad etc
the authors attempt to give a general construction to combine NLO matrix elements with
parton showers. However, we are led to believe that the results presented there are incorrect,
as they do not seem to reduce to a correct PS/NLO expression in the limit of having only
a single NLO matrix element.

In the next section, ... outline of the paper.

2. JET OBSERVABLES AND MONTE CARLO

Jet cross sections measured at collider experiments are defined using jet algorithms which
cluster the individual hadrons observed in the detector into jets. In addition to the choice of
the jet algorithm, the jet cross sections also depend on the various kinematic cuts made in the
experimental analysis. The differential n-jet cross sections can be calculated theoretically
by relating them to partonic cross sections via

dσjet
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσparton
i

dΦ′
i

J(Φ′
i, Φn) . (1)

Here J(Φ′
i, Φn) contains all the information on the used jet algorithm, including the relevant

phase space cuts. It describes if and how a given partonic final state at the phase space
point Φi contributes to the phase space point Φn of the n-jet cross section. The partonic
cross sections σparton

i in Eq. (1) are separately infrared (IR) divergent, but these divergences
cancel in the sum of all contributions due to the KLN theorem, provided the jet algorithm
J(Φ′

i, Φn) is IR safe.
Apart from the simplest examples, the analytic evaluation of Eq. (1) is nearly impossible,

and the essential goal of a Monte Carlo program is to efficiently evaluate Eq. (1) using
numerical techniques. To do so, the partonic cross sections σparton

i are organized into Monte
Carlo cross sections σMC

i which are suitable for numerical evaluation by a variety of Monte
Carlo algorithms. The jet cross sections computed by the Monte Carlo program are then
given by

dσjet,MC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσMC
i

dΦ′
i

J(Φ′
i, Φn) . (2)

3

Partonic calculations can only be obtained for small i

The jet algorithm depends in general on phase space cuts 
and efficiencies which requires fully exclusive events
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Jet cross sections

Problem 4:

Partonic calculations only give partons in final state

Efficiencies and experimental cuts can depend on the type 
of hadronic final state, as well as other NP effects 

How to get fully hadronized events?

There has been considerable progress over the past few years to include NLO cor-
rections in Monte Carlo programs and combine them with a LL parton shower descrip-
tion citeMC@NLO, POWHEG, etc.. However, most of the current approaches are only able
to include the NLO matrix element with the lowest multiplicity for a given process at a tim,
which we will refer to generically as PS/NLO merging. For example, for a 2 → 2 process,
PS/NLO combines the LO 2 → 2, NLO 2 → 2 and LO 2 → 3 matrix elements with a parton
shower. An extension of PS/NLO was given in Ref. citeGenEvA, by including additional
higher-multiplicity LO matrix elements, effectively combining the features of PS/NLO and
LOn/LL. The NLO cascade constructed in this paper goes significantly further, bringing the
accuracy to full NLOn/LL.

A first attempt to combine NLO matrix elements with different multiplicities with a
parton shower was carried out in Refs. citeNagysoper. The results there essentially amount
to an iteration of the known PS/NLO merging, where the n-body NLO matrix element
only contributes to the n-jet cross section defined in a particular way. However, it does not
contribute to the m-jet cross sections with m < n in the same way the n-body LO matrix
element does, which it should and does in a full NLO cascade. In Ref. citeLonnblad etc
the authors attempt to give a general construction to combine NLO matrix elements with
parton showers. However, we are led to believe that the results presented there are incorrect,
as they do not seem to reduce to a correct PS/NLO expression in the limit of having only
a single NLO matrix element.

In the next section, ... outline of the paper.

2. JET OBSERVABLES AND MONTE CARLO

Jet cross sections measured at collider experiments are defined using jet algorithms which
cluster the individual hadrons observed in the detector into jets. In addition to the choice of
the jet algorithm, the jet cross sections also depend on the various kinematic cuts made in the
experimental analysis. The differential n-jet cross sections can be calculated theoretically
by relating them to partonic cross sections via

dσjet
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσparton
i

dΦ′
i

J(Φ′
i, Φn) . (1)

Here J(Φ′
i, Φn) contains all the information on the used jet algorithm, including the relevant

phase space cuts. It describes if and how a given partonic final state at the phase space
point Φi contributes to the phase space point Φn of the n-jet cross section. The partonic
cross sections σparton

i in Eq. (1) are separately infrared (IR) divergent, but these divergences
cancel in the sum of all contributions due to the KLN theorem, provided the jet algorithm
J(Φ′

i, Φn) is IR safe.
Apart from the simplest examples, the analytic evaluation of Eq. (1) is nearly impossible,

and the essential goal of a Monte Carlo program is to efficiently evaluate Eq. (1) using
numerical techniques. To do so, the partonic cross sections σparton

i are organized into Monte
Carlo cross sections σMC

i which are suitable for numerical evaluation by a variety of Monte
Carlo algorithms. The jet cross sections computed by the Monte Carlo program are then
given by

dσjet,MC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσMC
i

dΦ′
i

J(Φ′
i, Φn) . (2)

3
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Summary of the 4 problems

1.How do we implement KLN cancellation numerically?

2.How do we get expressions that resum leading logarithms?

3.How do we get expressions for large number of particles?

4.How do we get fully hadronized events?
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Solution to the problems
Define “Monte Carlo cross sections”

given by
dσjet,MC

n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσMC
i

dΦ′
i

J(Φ′
i, Φn) . (2)

They provide an approximation to the jet cross sections σjet
n in Eq. (1) to a certain accuracy,

which depends on how much partonic information is included in the Monte Carlo cross
sections σMC

i . As discussed in the Introduction, for a minimum of accuracy, the σMC
i should

be correct to LOnmax
/LL, i.e. include the n-parton cross sections σparton

n at LO for all n ≤ nmax

(typically provided by a tree-level matrix-element generator) as well as leading-logarithmic
resummation (usually provided by a parton shower).

The aim of the NLO cascade is to improve the accuracy of σMC
i to NLOnmax

/LL. That is,
we want to include all contributions to σparton

n at LO for n ≤ nmax+1 and NLO for n ≤ nmax,
as well as leading-logarithmic resummation. At NLO, to avoid large numerical cancellations
and render the integration in Eq. (2) accurate and efficient, it is imperative that the σMC

i are
separately IR finite. The key requirement to construct the NLO cascade is that σMC

i itself
must be well defined in perturbation theory, and we will give that definition in Sec. 2D.

It is tempting to try to define σMC
n in analogy with Eq. (1) by simply replacing the

experimental jet algorithm J with a Monte Carlo “jet algorithm” JMC,

dσMC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσparton
i

dΦ′
i

JMC(Φ′
i, Φn) . (3)

Then, if JMC has a much finer resolution than J , it effectively acts like a δ-function
JMC(Φ′

i, Φn) ≈ δin δ(Φ′
n − Φn) as far as J is concerned. Here δin enforces that the di-

mensionality of Φi and Φn are the same, and δ(Φ′
n − Φn) ensures that the two phase space

points agree exactly. Thus, when applying J on σMC
i in Eq. (2), only the first term with

i = n in Eq. (3) effectively contributes and we get almost exactly the same as applying J
directly on σparton

i ,

dσjet,MC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

[

∑

j≥i

∫

dΦ′
j

dσparton
j

dΦ′
j

JMC(Φ′
j , Φ

′
i)

]

J(Φ′
i, Φn)

≈
∑

i≥n

∫

dΦ′
i

dσparton
i

dΦ′
i

J(Φ′
i, Φn)

≈
dσjet

n

dΦn

. (4)

While Eqs. (3) and (4) provide the right intuitive picture1, they are too naive in practice.
There are two complications regarding JMC and σMC

n , and these complications will be at
the heart of building a correct NLO cascade. The first issue that arises is that in order
to perturbatively calculate the n-jet cross section at NLO one needs to combine σparton

n

and a part of σparton
n+1 , where the latter contribution depends on JMC. Each of these two

contributions are separately IR divergent and only their sum in finite, as guaranteed by the
KLN theorem (as long as JMC is infrared safe). The second issue is that the partonic cross

1 At LO (without LL), only the i = n term in Eq. (3) is included by default and the above is indeed what

happens in practice.

4

Need to define d!i
MC such that gives measured jet 

cross section and solves all 4 problems

And define a jet cross section calculated from these

dσjet,MC
n

dΦn

=
∑
i≥n

∫
dΦ′

i

dσMC
i

dΦ′
i

JMC(Φ′
i, Φn)

S
(i)
n+1(Φn+1) ≡ D

ij,k
n+1(Φn+1)

∑
i

≡

∑
ij,k

dΦn+1 ≡ dΦij,k
n dΦij,k

rad

dyij,kdzij,kdφij,k

J ij,k
MC(Φn+1, Φn, µn) = δ(Φn − Φij,k

n )Θ(yij,k < µn)

2
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JMC("’i,"n)JMC("’i,"n)

Since integrate over singular phase space, KLN 
cancellation guaranteed

Define “Monte Carlo cross sections”

given by
dσjet,MC

n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσMC
i

dΦ′
i

J(Φ′
i, Φn) . (2)

They provide an approximation to the jet cross sections σjet
n in Eq. (1) to a certain accuracy,

which depends on how much partonic information is included in the Monte Carlo cross
sections σMC

i . As discussed in the Introduction, for a minimum of accuracy, the σMC
i should

be correct to LOnmax
/LL, i.e. include the n-parton cross sections σparton

n at LO for all n ≤ nmax

(typically provided by a tree-level matrix-element generator) as well as leading-logarithmic
resummation (usually provided by a parton shower).

The aim of the NLO cascade is to improve the accuracy of σMC
i to NLOnmax

/LL. That is,
we want to include all contributions to σparton

n at LO for n ≤ nmax+1 and NLO for n ≤ nmax,
as well as leading-logarithmic resummation. At NLO, to avoid large numerical cancellations
and render the integration in Eq. (2) accurate and efficient, it is imperative that the σMC

i are
separately IR finite. The key requirement to construct the NLO cascade is that σMC

i itself
must be well defined in perturbation theory, and we will give that definition in Sec. 2D.

It is tempting to try to define σMC
n in analogy with Eq. (1) by simply replacing the

experimental jet algorithm J with a Monte Carlo “jet algorithm” JMC,

dσMC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσparton
i

dΦ′
i

JMC(Φ′
i, Φn) . (3)

Then, if JMC has a much finer resolution than J , it effectively acts like a δ-function
JMC(Φ′

i, Φn) ≈ δin δ(Φ′
n − Φn) as far as J is concerned. Here δin enforces that the di-

mensionality of Φi and Φn are the same, and δ(Φ′
n − Φn) ensures that the two phase space

points agree exactly. Thus, when applying J on σMC
i in Eq. (2), only the first term with

i = n in Eq. (3) effectively contributes and we get almost exactly the same as applying J
directly on σparton

i ,

dσjet,MC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

[

∑

j≥i

∫

dΦ′
j

dσparton
j

dΦ′
j

JMC(Φ′
j , Φ

′
i)

]

J(Φ′
i, Φn)

≈
∑

i≥n

∫

dΦ′
i

dσparton
i

dΦ′
i

J(Φ′
i, Φn)

≈
dσjet

n

dΦn

. (4)

While Eqs. (3) and (4) provide the right intuitive picture1, they are too naive in practice.
There are two complications regarding JMC and σMC

n , and these complications will be at
the heart of building a correct NLO cascade. The first issue that arises is that in order
to perturbatively calculate the n-jet cross section at NLO one needs to combine σparton

n

and a part of σparton
n+1 , where the latter contribution depends on JMC. Each of these two

contributions are separately IR divergent and only their sum in finite, as guaranteed by the
KLN theorem (as long as JMC is infrared safe). The second issue is that the partonic cross

1 At LO (without LL), only the i = n term in Eq. (3) is included by default and the above is indeed what

happens in practice.

4

Divide phase space in singular and non-singular regions

J("’i,"n) = J("’i,"n)#("’i=sing) + J("i,"n)#("’i=non-sing)

Deal with Problem 1
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Deal with Problem 2

Calculate leading logarithms to d!n
MC to all orders in 

perturbation theory

Main idea is to use ideas of Sudakov factors and no-
branching probabilities to construct d!n

MC

Straightforward task to obtain LL resummed result, and 
combination of NLO and LL can be obtained my 

matching
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Deal with Problems 3-4
Parton shower algorithms generate phase space 

recursively ("2$"3$"4$...)

Each step in recursion simple ⇒generate arbitrarily 

complicated final states

Simple known ways to implement with models of 
hadronization

Gets the collinear and soft limit correct

Does not change total cross sections

If d!n
MC is merged with parton shower,

solve all 4 Problems 
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Combining fixed order 
calculations with Parton 

showers
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d"n

d"n+1

d"n+2

Pictoral phase space



Christian Bauer SLAC, 05/15/09

d"n

d"n+1

d"n+2

Pictoral phase space
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d"n

d"n+1

d"n+2

Pictoral phase space

Region of "n looks like "n-1

Define resolution variable tn 
(tn $0 in collinear region)

1

0

tn

1

0

tn+1

1

0

tn+2
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d"n

d"n+1

d"n+2

The parton shower

Starts from known Bn

Adds extra emissions via simple 
algorithm

Is probabilistic (always sums to 
the answer started from)

Simple way to attach 
hadronization at thad

Solves Problems 3-4 as 
advertised

Bn

Bn"PS

Bn"PS2

Hadronization

Hadronization
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d"n

d"n+1

d"n+2

Combining with LO
How do we correct higher dim 

phase space to LO results?Bn

Bn"PS

Bn"PS2
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d"n

d"n+1

d"n+2

Bn

Bn"PS Bn+1 - Bn"PS

Bn"PS2 [Bn+1-Bn"PS]"PS

Double up phase space

[Bn+1-Bn"PS]"PS
-Bn"PS2

Bn+2 - 

How do we correct higher dim 
phase space to LO results?
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d"n

d"n+1

d"n+2

Bn

Bn"PS Bn+1 - Bn"PS

Bn"PS2 [Bn+1-Bn"PS]"PS [Bn+1-Bn"PS]"PS
-Bn"PS2

Bn+2 - 

Need Shower analytically

Double up phase space
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d"n

d"n+1

d"n+2

Bn

Bn"PS Bn+1 - Bn"PS

Bn"PS2 [Bn+1-Bn"PS]"PS

Gives negative weights

[Bn+1-Bn"PS]"PS
-Bn"PS2

Bn+2 - 

Need Shower analytically

Double up phase space
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d"n

d"n+1

d"n+2

Bn

Bn"PS Bn+1 - Bn"PS

Bn"PS2 [Bn+1-Bn"PS]"PS [Bn+1-Bn"PS]"PS
-Bn"PS2

Bn+2 - 

Almost impossible to extend

Need Shower analytically

Gives negative weights

Double up phase space
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d"n

d"n+1

d"n+2

Double up phase space
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d"n

d"n+1

d"n+2

%n

Separate phase space
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d"n

d"n+1

d"n+2

%n

Separate phase space
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d"n

d"n+1

d"n+2

Bn"&n(%n)

Bn"&n(%n)PS(%n)

Bn"&n(%n)"PS(%n)2

Add new samples to fill the 
empty regions with fixed 
order calculations

Separate phase space
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Add new samples to fill the 
empty regions with fixed 
order calculations

Bn"&n(%n)

Bn+1"&n+1(%n+1)

d"n

d"n+1

d"n+2

Bn"&n(%n)PS(%n)

Bn"&n(%n)"PS(%n)2
Bn+1"&n+1(%n+1)"PS (%n+1)

Bn+2("n+2)"&n+2(%n+2)

Separate phase space
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Bn"&n(%n)

Bn"&n(%n)PS(%n)

Bn+1"&n+1(%n+1)

d"n

d"n+1

d"n+2

Bn"&n(%n)"PS(%n)2
Bn+1"&n+1(%n+1)"PS (%n+1)

Bn+2("n+2)"&n+2(%n+2)

Each correct @ LO/LL

Gives inclusive @ LO

CK
KW

M
LM

Separate phase space
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The same at NLO
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d"n

d"n+1

d"n+2

Bn+Vn

Bn+1

Naive attempt

Both columns separately div.
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d"n

d"n+1

d"n+2

Bn+Vn

Bn+1

Both columns separately div.

[Bn+Vn]"PS

(n+1) row does not sum up

Double up phase space



Christian Bauer SLAC, 05/15/09

d"n

d"n+1

d"n+2

Bn+Vn

Bn+1

Both columns separately div.

[Bn+Vn]"PS

(n+1) row does not sum up

Double up phase space
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d"n

d"n+1

d"n+2

Bn+Vn

[Bn+Vn]"PS Bn+1 - Bn"PS

Both columns separately div.

(n+1) row does not sum up'

Naive attempt
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d"n

d"n+1

d"n+2

Bn+1 - Bn"PS

Bn+Vn+"Bn"PS
'

Both columns separately div.

(n+1) row does not sum up

[Bn+Vn+"Bn"PS]
"PS

'

M
C@

NL
O

Double up phase space



Christian Bauer SLAC, 05/15/09

M
C@

NL
O

d"n

d"n+1

d"n+2

Bn+Vn+"Bn"PS

Bn+1 - Bn"PS

Almost impossible to extend

Need Shower analytically

Gives negative weights

[Bn+Vn+"Bn"PS]
"PS

Double up phase space
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d"n

d"n+1

d"n+2

What do I need for 
(n+1)-body phase space?

!n
incl"&n(%n)

!n
incl"&n(%n)"PS(%n)

Bn+1
!n

incl

Bn
"&n

B(tn+1)

Separate phase space
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d"n

d"n+1

d"n+2

Bn+1
!n

incl

Bn
"&n

B(tn+1)

!n
incl"&n(%n)

!n
incl"&n(%n)"PS(%n)

"d"rad    &n
B(trad)((1>trad>%) = 1-&n

B(%)Bn

Bn+1

  QB("rad) = Bn

Bn+1choose

Separate phase space
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d"n

d"n+1

d"n+2

Bn+1
!n

incl

Bn
"&n

B(tn+1)

!n
incl"&n(%n)"PS(%n)

"d"rad    &n
B(trad)((1>trad>%) = 1-&n

B(%)Bn

Bn+1

  QB("rad) = Bn

Bn+1choose
!n

incl"&n
B(%n)

PO
W
HE

G

Separate phase space
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d"n

d"n+1

d"n+2

Bn+1
!n

incl

Bn
"&n

B(tn+1)

!n
incl"&n(%n)"PS(%n)

!n
incl"&n

B(%n)

PO
W
HE

G

Need to calculate integral

Separate phase space
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d"n

d"n+1

d"n+2

Bn+1
!n

incl

Bn
"&n

B(tn+1)

!n
incl"&n(%n)"PS(%n)

!n
incl"&n

B(%n)

PO
W
HE

G

Need to calculate integral

Need to calculate Sudakov

Separate phase space
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d"n

d"n+1

d"n+2

Bn+1
!n

incl

Bn
"&n

B(tn+1)

!n
incl"&n(%n)"PS(%n)

!n
incl"&n

B(%n)

PO
W
HE

G

Need to calculate Sudakov

Need to calculate integral

Broken the symmetry

Separate phase space
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d"n

d"n+1

d"n+2

Bn+1
!n

incl

Bn
"&n

B(tn+1)

!n
incl"&n(%n)"PS(%n)

!n
incl"&n

B(%n)

PO
W
HE

G

Need to calculate Sudakov

Need to calculate integral

Difficult to extend

Separate phase space
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d"n

d"n+1

d"n+2

d!n
excl(%n)
d"n

d!n+1
excl(%n+1)

d"n+1

d!n+2
excl(%n+2)

d"n+2

%n

Our Method

Gives inclusive @ NLO

Each correct @ NLO/LL

No gratuitous num integrals



Christian Bauer SLAC, 05/15/09

Determining the !excl

Obtain the correct expression at fixed order

Need careful definition of JMC to have analytical results

Write expression that has correct logarithmic structure

Use parton shower ideas as a guidline

Combine the two results by a simple matching
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We will start by defining exactly which fixed-order calculations we will match to, and the
requirement that there be no numeric integrations will justify the choice of JMC in Eq. (17).
We will then define what we mean by a LL parton shower expression, which will constrain
how [·]i acts in Eq. (20). Finally, we will derive the NLO cascade recursively by using the
matching coefficients to turn the parton shower expression into an NLO cross section for
arbitrary n-jet observables.

A. Fixed-Order Exclusive Cross Sections

At NLO, every fixed-order calculation requires a measurement function to define how
infrared divergences cancel between virtual and real emission diagrams. In Sec. 2C, we
claimed that in order to get analytic expressions for exclusive n-jet cross sections, we had
to use a particular choice for the measurement function. We will now justify that choice.

Starting from the expression for the exclusive cross sections given in Eq. (6), we can add
and subtract integrals over the subtraction functions to obtain

dσexcl
n (µn)

dΦn

=
dσparton

n

dΦn

+

∫

dΦ′
n+1

dσparton
n+1

dΦn

JMC(Φ′
n+1, Φn, µn)

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Bn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn)

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Sn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn)

+

∫

dΦ′
n+1

[

Bn+1(Φ
′
n+1) − Sn+1(Φ

′
n+1)

]

JMC(Φ′
n+1, Φn, µn)

(25)

dσexcl
n (µn)

dΦn

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Sn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn) (26)

where we have defined

V S
n (Φn, µn) ≡ Vn(Φn) +

∫

dΦn+1 Sn+1(Φn+1)JMC(Φn+1, Φn, µn) (27)

BS
n+1(Φn+1) ≡ Bn+1(Φn+1) − Sn+1(Φn+1) . (28)

As discussed already briefly in the previous section, in most subtraction methods the
actual subtraction function is divided into a number of pieces (often dipoles or antennae),
such that

Sn+1(Φn+1) =
∑

in+1

Sin+1

n+1 (Φn+1) . (29)

For each in+1, there is phase space projection P in+1

n+1→n such that the integral of Sin+1

n+1 over the

singular region of phase space defined by a restriction Rin+1

n+1 is completely analytic. That is,

∑

in+1

∫

dΦ′
n+1 Sin+1

n+1 (Φ′
n+1)P

in+1

n+1→n(Φ
′
n+1, Φn)Rin+1

n+1 (Φ′
n+1, µn) (30)

10

Fixed order results

Final result for small %n

Deriving a generic expression

0

We will start by defining exactly which fixed-order calculations we will match to, and the
requirement that there be no numeric integrations will justify the choice of JMC in Eq. (17).
We will then define what we mean by a LL parton shower expression, which will constrain
how [·]i acts in Eq. (20). Finally, we will derive the NLO cascade recursively by using the
matching coefficients to turn the parton shower expression into an NLO cross section for
arbitrary n-jet observables.

A. Fixed-Order Exclusive Cross Sections

At NLO, every fixed-order calculation requires a measurement function to define how
infrared divergences cancel between virtual and real emission diagrams. In Sec. 2C, we
claimed that in order to get analytic expressions for exclusive n-jet cross sections, we had
to use a particular choice for the measurement function. We will now justify that choice.

Starting from the expression for the exclusive cross sections given in Eq. (6), we can add
and subtract integrals over the subtraction functions to obtain

dσexcl
n (µn)

dΦn

=
dσparton

n

dΦn

+

∫

dΦ′
n+1

dσparton
n+1

dΦn

JMC(Φ′
n+1, Φn, µn)

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Bn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn)

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Sn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn)

+

∫

dΦ′
n+1

[

Bn+1(Φ
′
n+1) − Sn+1(Φ

′
n+1)

]

JMC(Φ′
n+1, Φn, µn)

(25)

dσexcl
n (µn)

dΦn

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Sn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn) (26)

where we have defined

V S
n (Φn, µn) ≡ Vn(Φn) +

∫

dΦn+1 Sn+1(Φn+1)JMC(Φn+1, Φn, µn) (27)

BS
n+1(Φn+1) ≡ Bn+1(Φn+1) − Sn+1(Φn+1) . (28)

As discussed already briefly in the previous section, in most subtraction methods the
actual subtraction function is divided into a number of pieces (often dipoles or antennae),
such that

Sn+1(Φn+1) =
∑

in+1

Sin+1

n+1 (Φn+1) . (29)

For each in+1, there is phase space projection P in+1

n+1→n such that the integral of Sin+1

n+1 over the

singular region of phase space defined by a restriction Rin+1

n+1 is completely analytic. That is,

∑

in+1

∫

dΦ′
n+1 Sin+1

n+1 (Φ′
n+1)P

in+1

n+1→n(Φ
′
n+1, Φn)Rin+1

n+1 (Φ′
n+1, µn) (30)

10
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Fixed order results

We will start by defining exactly which fixed-order calculations we will match to, and the
requirement that there be no numeric integrations will justify the choice of JMC in Eq. (17).
We will then define what we mean by a LL parton shower expression, which will constrain
how [·]i acts in Eq. (20). Finally, we will derive the NLO cascade recursively by using the
matching coefficients to turn the parton shower expression into an NLO cross section for
arbitrary n-jet observables.

A. Fixed-Order Exclusive Cross Sections

At NLO, every fixed-order calculation requires a measurement function to define how
infrared divergences cancel between virtual and real emission diagrams. In Sec. 2C, we
claimed that in order to get analytic expressions for exclusive n-jet cross sections, we had
to use a particular choice for the measurement function. We will now justify that choice.

Starting from the expression for the exclusive cross sections given in Eq. (6), we can add
and subtract integrals over the subtraction functions to obtain

dσexcl
n (µn)

dΦn

=
dσparton

n

dΦn

+

∫

dΦ′
n+1

dσparton
n+1

dΦn

JMC(Φ′
n+1, Φn, µn)

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Bn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn)

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Sn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn)

+

∫

dΦ′
n+1

[

Bn+1(Φ
′
n+1) − Sn+1(Φ

′
n+1)

]

JMC(Φ′
n+1, Φn, µn)

(25)

dσexcl
n (µn)

dΦn

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Sn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn) (26)

where we have defined

V S
n (Φn, µn) ≡ Vn(Φn) +

∫

dΦn+1 Sn+1(Φn+1)JMC(Φn+1, Φn, µn) (27)

BS
n+1(Φn+1) ≡ Bn+1(Φn+1) − Sn+1(Φn+1) . (28)

As discussed already briefly in the previous section, in most subtraction methods the
actual subtraction function is divided into a number of pieces (often dipoles or antennae),
such that

Sn+1(Φn+1) =
∑

in+1

Sin+1

n+1 (Φn+1) . (29)

For each in+1, there is phase space projection P in+1

n+1→n such that the integral of Sin+1

n+1 over the

singular region of phase space defined by a restriction Rin+1

n+1 is completely analytic. That is,

∑

in+1

∫

dΦ′
n+1 Sin+1

n+1 (Φ′
n+1)P

in+1

n+1→n(Φ
′
n+1, Φn)Rin+1

n+1 (Φ′
n+1, µn) (30)
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Need to choose JMC such that analytically calulable

We will start by defining exactly which fixed-order calculations we will match to, and the
requirement that there be no numeric integrations will justify the choice of JMC in Eq. (??).
We will then define what we mean by a LL parton shower expression, which will constrain
how [·]i acts in Eq. (??). Finally, we will derive the NLO cascade recursively by using the
matching coefficients to turn the parton shower expression into an NLO cross section for
arbitrary n-jet observables.

A. Fixed-Order Exclusive Cross Sections

At NLO, every fixed-order calculation requires a measurement function to define how
infrared divergences cancel between virtual and real emission diagrams. In Sec. ??, we
claimed that in order to get analytic expressions for exclusive n-jet cross sections, we had
to use a particular choice for the measurement function. We will now justify that choice.

Starting from the expression for the exclusive cross sections given in Eq. (??), we can
add and subtract integrals over the subtraction functions to obtain

dσexcl
n (µn)

dΦn

=
dσparton

n

dΦn

+

∫

dΦ′
n+1

dσparton
n+1

dΦn

JMC(Φ′
n+1, Φn, µn)

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Bn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn)

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Sn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn)

+

∫

dΦ′
n+1

[

Bn+1(Φ
′
n+1) − Sn+1(Φ

′
n+1)

]

JMC(Φ′
n+1, Φn, µn)

(25)

dσexcl
n (µn)

dΦn

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Sn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn) (26)

Sn+1(Φ
′
n+1) =

∑

i

S(i)
n+1(Φ

′
n+1) (27)

where we have defined

V S
n (Φn, µn) ≡ Vn(Φn) +

∫

dΦn+1 Sn+1(Φn+1)JMC(Φn+1, Φn, µn) (28)

BS
n+1(Φn+1) ≡ Bn+1(Φn+1) − Sn+1(Φn+1) . (29)

As discussed already briefly in the previous section, in most subtraction methods the
actual subtraction function is divided into a number of pieces (often dipoles or antennae),
such that

Sn+1(Φn+1) =
∑

in+1

Sin+1

n+1 (Φn+1) . (30)

For each in+1, there is phase space projection P in+1

n+1→n such that the integral of Sin+1

n+1 over the

singular region of phase space defined by a restriction Rin+1

n+1 is completely analytic. That is,

∑

in+1

∫

dΦ′
n+1 Sin+1

n+1 (Φ′
n+1)P

in+1

n+1→n(Φ
′
n+1, Φn)Rin+1

n+1 (Φ′
n+1, µn) (31)

10

Write S as sum over 
different terms

For each i can find JMC
(i) 

that allows to integrate

We will start by defining exactly which fixed-order calculations we will match to, and the
requirement that there be no numeric integrations will justify the choice of JMC in Eq. (??).
We will then define what we mean by a LL parton shower expression, which will constrain
how [·]i acts in Eq. (??). Finally, we will derive the NLO cascade recursively by using the
matching coefficients to turn the parton shower expression into an NLO cross section for
arbitrary n-jet observables.

A. Fixed-Order Exclusive Cross Sections

At NLO, every fixed-order calculation requires a measurement function to define how
infrared divergences cancel between virtual and real emission diagrams. In Sec. ??, we
claimed that in order to get analytic expressions for exclusive n-jet cross sections, we had
to use a particular choice for the measurement function. We will now justify that choice.

Starting from the expression for the exclusive cross sections given in Eq. (??), we can
add and subtract integrals over the subtraction functions to obtain

dσexcl
n (µn)

dΦn

=
dσparton

n

dΦn

+

∫

dΦ′
n+1

dσparton
n+1

dΦn

JMC(Φ′
n+1, Φn, µn)

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Bn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn)

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Sn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn)

+

∫

dΦ′
n+1

[

Bn+1(Φ
′
n+1) − Sn+1(Φ

′
n+1)

]

JMC(Φ′
n+1, Φn, µn)

(25)

dσexcl
n (µn)

dΦn

= Bn(Φn) + Vn(Φn) +

∫

dΦ′
n+1 Sn+1(Φ

′
n+1)JMC(Φ′

n+1, Φn, µn) (26)

Sn+1(Φ
′
n+1) =

∑

i

S(i)
n+1(Φ

′
n+1) (27)

where we have defined

V S
n (Φn, µn) ≡ Vn(Φn) +

∫

dΦn+1 Sn+1(Φn+1)JMC(Φn+1, Φn, µn) (28)

BS
n+1(Φn+1) ≡ Bn+1(Φn+1) − Sn+1(Φn+1) . (29)

As discussed already briefly in the previous section, in most subtraction methods the
actual subtraction function is divided into a number of pieces (often dipoles or antennae),
such that

Sn+1(Φn+1) =
∑

in+1

Sin+1

n+1 (Φn+1) . (30)

∫

dΦn+1 S(i)
n+1(Φn+1)J

(i)
MC(Φn+1, Φn, µn) (31)

10
Therefore, can choose

For each in+1, there is phase space projection P in+1

n+1→n such that the integral of Sin+1

n+1 over the

singular region of phase space defined by a restriction Rin+1

n+1 is completely analytic. That is,

∑

in+1

∫

dΦ′
n+1 Sin+1

n+1 (Φ′
n+1)P

in+1

n+1→n(Φ
′
n+1, Φn)Rin+1

n+1 (Φ′
n+1, µn) (32)

is calculable for arbitrary choice of µn. Therefore, Eq. (28) is analytically calculable if

JMC(Φ′
n+1, Φn, µn) =

∑

i

S(i)
n+1(Φ

′
n+1)

Sn+1(Φ′
n+1)

J (i)
MC(Φ′

n+1, Φn, µn) . (33)

With this choice of JMC, V S
n is analytically calculable, but the integral over BS

n+1 still
requires a numerical integration. Since BS

n+1 is finite and the integration only goes over a
phase space region constrained by µn, the contribution of BS

n+1 to σexcl
n (µn) is small and can

be dropped. That is,
dσexcl

n

dΦn

= Bn(Φn) + V S
n (Φn, µn) + O(µn). (34)

This defines the σexcl that will be used in the NLO Cascade. It is completely calculable with
no numeric integrations and only differs from the true answer by O(µn) corrections.

By dropping the BS
n+1 term in σexcl, we are introducing a trade-off. We need to take small

µn in order for σexcl
n to be accurate, but this has consequence of introducing large logarithms

of µn in the expression for V S
n . One can in fact verify that the expression for V S

n contains a
term of order

V S
n (Φn, µn) = αn+1

s log2 µn + . . . , (35)

and for small enough values of µn can therefore become as large as the order αn
s Born term.

Therefore, to use Eq. (34) for SM background estimation, we must resum logarithms of
µn. As a side note, Eq. (25) is a hybrid of the slicing and subtraction methods for NLO
calculations, and Eq. (34) is essentially the starting point for a slicing calculation.

B. Parton Shower Approach to Leading Logarithms

We saw above that the NLO exclusive cross sections have large logarithmic dependence
on µn. In addition, it is well known that fixed-order calculations typically contain loga-
rithmic dependence on the ratios of kinematics scales. If these kinematic scales become
widely separated, the presence of large logarithmics can spoil the convergence of fixed-order
perturbation theory, and these logs must be resummed to obtain a reliable answer. In this
section, we will show how to obtain results correct to leading logarithmic (LL) accuracy,
which means that it gives the leading result in the limit αs log2 ∼ 1.

Since LL expressions get contributions from all orders in the perturbative αs expansion,
in principle one needs to know the definition of JMC not just for the mapping of (n+1)- to n-
body phase space, but for all (n+ k)-body measurement functions with k ≥ 1. However, we
can use a trick to define the LL expression without knowing the precise definitions for JMC.
It is well-known that parton shower algorithms generate events according to distributions
which are correct to LL accuracy, and using knowledge about how parton shower algorithms
work, we can directly write down an expression for σMC accurate to the LL level.

11
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Example: Catani-Seymour
S

(i)
n+1(Φn+1) ≡ D

ij,k
n+1(Φn+1)

∑

i

≡

∑

ij,k

2

S
(i)
n+1(Φn+1) ≡ D

ij,k
n+1(Φn+1)

∑

i

≡

∑

ij,k

2

singularity pi"pj$0 
with k recoil

Different term for each of three partons [ (i)$ij,k ]

S
(i)
n+1(Φn+1) ≡ D

ij,k
n+1(Φn+1)

∑

i

≡

∑

ij,k

dΦn+1 ≡ dΦij,k
n dΦij,k

rad

2

Factorization for 
each {ij,k}

Gives rise to analytically calculable integrals
Nagy, Trocsanyi (’98)

S
(i)
n+1(Φn+1) ≡ D

ij,k
n+1(Φn+1)

∑

i

≡

∑

ij,k

dΦn+1 ≡ dΦij,k
n dΦij,k

rad

dyij,kdzij,kdφij,k

2

S
(i)
n+1(Φn+1) ≡ D

ij,k
n+1(Φn+1)

∑

i

≡

∑

ij,k

dΦn+1 ≡ dΦij,k
n dΦij,k

rad

dyij,kdzij,kdφij,k

J ij,k
MC(Φn+1, Φn, µn) = δ(Φn − Φij,k

n )Θ(yij,k < µn)

2

This allows to define
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Correct logarithmic structure

Write cross section in recursive form

Use the fact that parton shower resums 
leading logarithmic terms

Several subtleties, but can be done

dσjet,MC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσMC
i

dΦ′
i

JMC(Φ′
i, Φn)

S
(i)
n+1(Φn+1) ≡ D

ij,k
n+1(Φn+1)

∑

i

≡

∑

ij,k

dΦn+1 ≡ dΦij,k
n dΦij,k

rad

dyij,kdzij,kdφij,k

J ij,k
MC(Φn+1, Φn, µn) = δ(Φn − Φij,k

n )Θ(yij,k < µn)

[

dσPS
n

dΦn

]

=

[

dσPS
n−1

dΦn−1

]

× PS

2
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Combine results
Use slightly generalized LL result

Choose splitting functions as

Determine matching coefficient by explicit comparison 
with previous NLO result

dσjet,MC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσMC
i

dΦ′
i

JMC(Φ′
i, Φn)

S
(i)
n+1(Φn+1) ≡ D

ij,k
n+1(Φn+1)

∑

i

≡

∑

ij,k

dΦn+1 ≡ dΦij,k
n dΦij,k

rad

dyij,kdzij,kdφij,k

J ij,k
MC(Φn+1, Φn, µn) = δ(Φn − Φij,k

n )Θ(yij,k < µn)

[

dσPS
n

dΦn

]

=

[

dσPS
n−1

dΦn−1

]

× PS

[

dσMC
n (µn)

dΦn

]

=
∑

i

([

dσMC
n−1

dΦn−1

]

Q(i)(Φn−1→n) + M (i)
n (Φn)

)

∆n(µn)

Q(i)(Φn−1→n) =
S

(i)
n (Φn)

Bn−1(Φn−1)

2

dσjet,MC
n

dΦn

=
∑

i≥n

∫

dΦ′
i

dσMC
i

dΦ′
i

JMC(Φ′
i, Φn)

S
(i)
n+1(Φn+1) ≡ D

ij,k
n+1(Φn+1)

∑

i

≡

∑

ij,k

dΦn+1 ≡ dΦij,k
n dΦij,k

rad

dyij,kdzij,kdφij,k

J ij,k
MC(Φn+1, Φn, µn) = δ(Φn − Φij,k

n )Θ(yij,k < µn)

[

dσPS
n

dΦn

]

=

[

dσPS
n−1

dΦn−1

]

× PS

[

dσMC
n (µn)

dΦn

]

=
∑

i

([

dσMC
n−1

dΦn−1

]

Q(i)(Φn−1→n) + M (i)
n (Φn)

)

∆n(µn)

Q(i)(Φn−1→n) =
S

(i)
n (Φn)

Bn−1(Φn−1)

2
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the combination of fixed order perturbation theory and LL resummation can be achieved by
adding a matching coefficient to Eqs. (28) and (29):

dσcascade
n (µn, µn−1)

dΦn

≡
∑

in

[

dσcascade
n (µn)

dΦn

]

in

(

1 − Rin
n (Φn, µn−1)

)

, (40)

[

dσcascade
n (µn)

dΦn

]

in

=

(

dσcascade
n−1 (tinn )

dΦin
n−1

Qin
n−1→n(Φin

n−1→n) + M in
n (Φn)

)

∆Q
n (tinn , µn) . (41)

The matching coefficients M in
n will be adjusted order by order in perturbation theory to

make the differential cross section agree with the fixed order results. Note that there is a
separate matching coefficient for each branching possibility in, and that the cascade result
takes a recursive form. Also, to get a true cascade is important that the matching coefficient
M in

n is multiplied by the Sudakov factor ∆Q
n .

Before discussing the matching conditions, it is important to first specify the splitting
functions used in Eq. (41). In the parton shower, the only constraints on the splitting
functions are that they need to reproduce the combined soft-collinear limit of the Born-level
cross section. For example, in [? ] we used the full Born-level cross section to define the
splitting functions, and while this did result in simple expressions for the resummed exclusive
cross sections, the Sudadov integrals could only be calculated analytically in the simplest
cases. Thus, we wish to choose splitting functions and phase space boundaries such that the
Sudakov factors in Eq. (36) have closed form expressions.

Moreover, in order to avoid double counting, it is important that the sum over in for the
shower histories is the same sum as the sum over in in the subtractions. Similarly, the in-th
subtraction must use the same phase space projections and restrictions as the in-th parton
splitting function. It is therefore highly convenient to use splitting functions derived from
the subtractions, namely:

Qin
n−1→n(Φ

in
n−1) =

Sin
n (Φn)

Bn−1(Φ
in
n−1)

. (42)

We will see that the Sudakov factor derived from this splitting function does indeed have a
closed form expression.

Now we can specify the matching criteria for the NLO cascade. At Born order in the αs

expansion, the cascade cross section σcascade
n should be equal Bn. Recalling the argument

from Eq. (17) on how to avoid double counting, we must take

[

dσcascade
n (µn)

dΦn

](0)

in

= Bn(Φn)
Sin

n (Φn)

Sn(Φn)
. (43)

At the next order in αs, we have more freedom to specify how the cross section V S
n is divided

up among the branching possibilities. The simplest choice for the matching criteria is
[

dσcascade
n (µn)

dΦn

](1)

in

= V S
n (Φn, µn)

Sin
n (Φn)

Sn(Φn)
, (44)

where we have dropped integral over BS
n+1 terms per the discussion in Eq. (26).

It is now a straightforward exercise to calculate the matching coefficients.

M in,(0)
n (Φn) = Sin

n (Φn)

(

Bn(Φn)

Sn(Φn)
− 1

)

, (45)

13M in,(1)
n (Φn) = Sin

n

(

V S
n (Φn, µn)

Sn(Φn)
−

V S
n−1(Φ

in
n−1, t

in
n )

Bn−1(Φ
in
n−1)

− ∆(1)
n (tinn , µn)

)

. (46)

This is the main result of this paper.
A few comments about this result. Note that the V S

n−1(Φ
in
n−1, t

in
n ) term is calculated with

a restriction scale tinn . We argued that we could drop the contribution from BS
n+1 if the

restriction scale were low, but here it appear that tinn can get arbitrary large. Note, however,
that

V S
n−1(Φn−1, tn) = V S

n−1(Φn−1, µn−1) + ∆(1)
n−1(tn, µn−1), (47)

so V S
n−1 is actually calculated with a low restriction scale µn−1, and the ∆(1)

n−1 factor appears
because of the overall factor of ∆Q

n−1 in the cascade expression.
We claimed that the parton shower correctly did leading logarithmic resummation, there-

fore, we should be able to check that there are no logarithmic contributions in the matching.
The two potential sources of leading logarithms are from M in,(0) when integrated to form an
(n− 1)-jet cross section, or from M in,(1) in an n-jet cross section. Since Bn and Sn have the
same singularities, there can be no leading logarithms from integrating over M in,(0). Seeing
the cancellation of leading logarithms in M in,(1) is more subtle. Using Eq. (47), we can

rewrite M in,(1)
n as

M in,(1)
n (Φn) = Sin

n

(

V S
n (Φn, tinn )

Sn(Φn)
−

V S
n−1(Φ

in
n−1, t

in
n )

Bn−1(Φ
in
n−1)

−
Sn(Φn) − Bn(Φn)

Sn(Φn)
∆(1)

n (tinn , µn)

)

.

(48)
(I want to say that now it is obvious that the logs have a chance to cancel, but NOTE

I don’t see it immediately.)

4. IMPLEMENTATION USING DIPOLE SUBTRACTIONS

A. Definition of Catani-Seymour Dipoles

There are several definitions for dipole subtractions, and in this work we will follow the
work by Catani-Seymour (CS), even though in general any construction can be used. The
CS subtractions state that the singular behavior of the square of any n-body amplitude
Mn(Φn) in full QCD is correctly reproduced by

Sn(Φn) =
∑

ij "=k

D(n)
ij,k(Φn) , (49)

where the sum runs over all combinations of three particles ijk in the n-body phase space.
The contributions D(n)

ij,k are defined by

D(n)
ij,k(Φn) = −

1

2pi · pj
n−1〈1, . . . , ĩj, k̃, . . . n|

Tk · Tij

T2
ij

Vij,k|1, . . . , ĩj, k̃, . . . n〉n−1 , (50)

where the notation is identical to the one used in [? ]. The matrix Vij,k depends on the
spins and helicities of the particles in the remaining n-body phase space Φij,k

n and describes
the dipole splitting.

14

Determining the !excl

By expanding to NLO order and comparing with known 
results, can obtain Mn

Everything known analytically!

The tree 
level 

diagrams

The virtual 
(1-loop) 
diagrams

Known 
subtraction 
functions

Expansion of 
the Sudakov 

function
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Status of the work?

Have all the analytical results 
worked out in detail for e+e-

Currently debugging implementation 
in GenEvA for e+e-
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Implementation in GenEvA
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Implementation in GenEvA
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Status of the work?

Have all the analytical results 
worked out in detail for e+e-

Currently debugging implementation 
in GenEvA for e+e-

Working on extension to allow for 
hadron colliders

Hope to have first numerical results by 
the summer
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Conclusions

Both NLO calculations and parton shower algorithms crucial 
to have detailed understanding of signals and backgrounds

Need to merge the two approaches to get reliable and 
trustworthy results

Four main problems that need to be addressed

Believe we have a fast and efficient algorithm that should 
give us first results by the summer


