Combining NLO Calculations with Parton Showers SLAC Seminar 05/15/09 Christian Bauer

LBNL and UCB

In collaboration with Jesse Thaler and Frank Tackmann

Christian Bauer

Measurements @ LHC

Goal of LHC is to determine the mechanism of EW symmetry breaking

Main question, is the SM sufficient, or do we need physics beyond the standard model (BSM)

By definition BSM is difference between true distributions in nature and SM predictions

 $\sigma_{BSM} = \sigma_{true} - \sigma_{SM}$

Measurements @ LHC

Problem:

Measured distributions are convolutions of true distributions with detector effects

$\sigma_{meas} = d\sigma_{true} \otimes detector$

For a meaningful comparison between σ_{meas} and SM predictions, need to be able to calculate

$\sigma_{\text{pred}} = d\sigma_{\text{SM}} \otimes detector$

Why parton showers?

Detector effects depend on details of the fully hadronic events (π^+ vs π^0 , details of jets)

Need $d\sigma_{SM}$ including full hadronization effects

Only known way to generate exclusive distributions is using parton shower Monte Carlos (Pythia/Herwig)

$d\sigma_{SM} = (Calc) \otimes Pythia/Herwig$

In order to use LHC data...

For the perturbative part, NLO calculations are the state of the art and should be viewed as mandatory

Several processes only available at NLO
Scale dependence only under control starting at NLO
NLO calculations required to get to O(10%) uncertainty

Combine NLO calculations with parton showers

Outline

Jet Observables and Monte Carlo The Parton Shower Algorithm Generics of combining with fixed order calculations NLO Accuracy Some details of our calculation Conclusions

Jet observables and Monte Carlo

Defined with help of jet algorithm

k particles in detector

n jets observed

If jet algorithm is infrared safe, can calculate perturbatively

$$\frac{\mathrm{d}\sigma_n^{\text{jet}}}{\mathrm{d}\Phi_n} = \sum_{i>n} \int \mathrm{d}\Phi'_i \, \frac{\mathrm{d}\sigma_i^{\text{parton}}}{\mathrm{d}\Phi'_i} \, J(\Phi'_i, \Phi_n)$$

Christian Bauer

Problem 1:

Each term in sum separately divergent (cancels in sum)
In general can only do this calculation numerically by integrating over each term in sum separately

How do we deal with the IR divergences numerically?

$$\frac{\mathrm{d}\sigma_n^{\text{jet}}}{\mathrm{d}\Phi_n} = \sum_{i>n} \int \mathrm{d}\Phi'_i \, \frac{\mathrm{d}\sigma_i^{\text{parton}}}{\mathrm{d}\Phi'_i} \, J(\Phi'_i, \Phi_n)$$

Christian Bauer

Problem 2:

Partonic calculations calculated in fixed order PT
 Presence of large ratios in phase space variables gives large logarithmic terms that destroy convergence of PT

How do we sum large logs for all i?

$$\frac{\mathrm{d}\sigma_n^{\text{jet}}}{\mathrm{d}\Phi_n} = \sum_{i>n} \int \mathrm{d}\Phi_i' \, \frac{\mathrm{d}\sigma_i^{\text{parton}}}{\mathrm{d}\Phi_i'} \, J(\Phi_i', \Phi_n)$$

Christian Bauer

Problem 3:

Partonic calculations can only be obtained for small i
 The jet algorithm depends in general on phase space cuts and efficiencies which requires fully exclusive events

How to get expression for large i?

$$\frac{\mathrm{d}\sigma_n^{\text{jet}}}{\mathrm{d}\Phi_n} = \sum_{i>n} \int \mathrm{d}\Phi'_i \, \frac{\mathrm{d}\sigma_i^{\text{parton}}}{\mathrm{d}\Phi'_i} \, J(\Phi'_i, \Phi_n)$$

Christian Bauer

Problem 4:

Partonic calculations only give partons in final state
Efficiencies and experimental cuts can depend on the type of hadronic final state, as well as other NP effects

How to get fully hadronized events?

$$\frac{\mathrm{d}\sigma_n^{\text{jet}}}{\mathrm{d}\Phi_n} = \sum_{i>n} \int \mathrm{d}\Phi'_i \, \frac{\mathrm{d}\sigma_i^{\text{parton}}}{\mathrm{d}\Phi'_i} \, J(\Phi'_i, \Phi_n)$$

Christian Bauer

Summary of the 4 problems

1. How do we implement KLN cancellation numerically?

2. How do we get expressions that resum leading logarithms?

3. How do we get expressions for large number of particles?

4. How do we get fully hadronized events?

Christian Bauer

Solution to the problems

Define "Monte Carlo cross sections"

$$\frac{\mathrm{d}\sigma_n^{\mathrm{MC}}}{\mathrm{d}\Phi_n} = \sum_{i>n} \int \mathrm{d}\Phi_i' \, \frac{\mathrm{d}\sigma_i^{\mathrm{parton}}}{\mathrm{d}\Phi_i'} \, J_{\mathrm{MC}}(\Phi_i', \Phi_n)$$

And define a jet cross section calculated from these

$$\frac{\mathrm{d}\sigma_n^{\mathrm{jet,MC}}}{\mathrm{d}\Phi_n} = \sum_{i\geq n} \int \mathrm{d}\Phi_i' \, \frac{\mathrm{d}\sigma_i^{\mathrm{MC}}}{\mathrm{d}\Phi_i'} \, J_{\overline{\mathrm{MC}}}(\Phi_i',\Phi_n)$$

Need to define $d\sigma_i^{MC}$ such that gives measured jet cross section and solves all 4 problems

Christian Bauer

Deal with Problem 1 Divide phase space in singular and non-singular regions $J(\Phi'_{i},\Phi_{n}) = (J(\Phi'_{i},\Phi_{n})\Theta(\Phi'_{i}=sing)) + (J(\Phi_{i},\Phi_{n})\Theta(\Phi'_{i}=non-sing))$ $J_{MC}(\Phi'_{i}, \Phi_{n}) \qquad J_{MC}(\Phi'_{i}, \Phi_{n})$ Define "Monte Carlo cross sections" $\frac{\mathrm{d}\sigma_n^{\mathrm{MC}}}{\mathrm{d}\Phi_n} = \sum_{i > n} \int \mathrm{d}\Phi_i' \, \frac{\mathrm{d}\sigma_i^{\mathrm{parton}}}{\mathrm{d}\Phi_i'} \, J_{\mathrm{MC}}(\Phi_i', \Phi_n)$

Since integrate over singular phase space, KLN cancellation guaranteed

Christian Bauer

Deal with Problem 2

Calculate leading logarithms to $d\sigma_n^{MC}$ to all orders in perturbation theory

Main idea is to use ideas of Sudakov factors and nobranching probabilities to construct $d\sigma_n{}^{MC}$

Straightforward task to obtain LL resummed result, and combination of NLO and LL can be obtained my matching

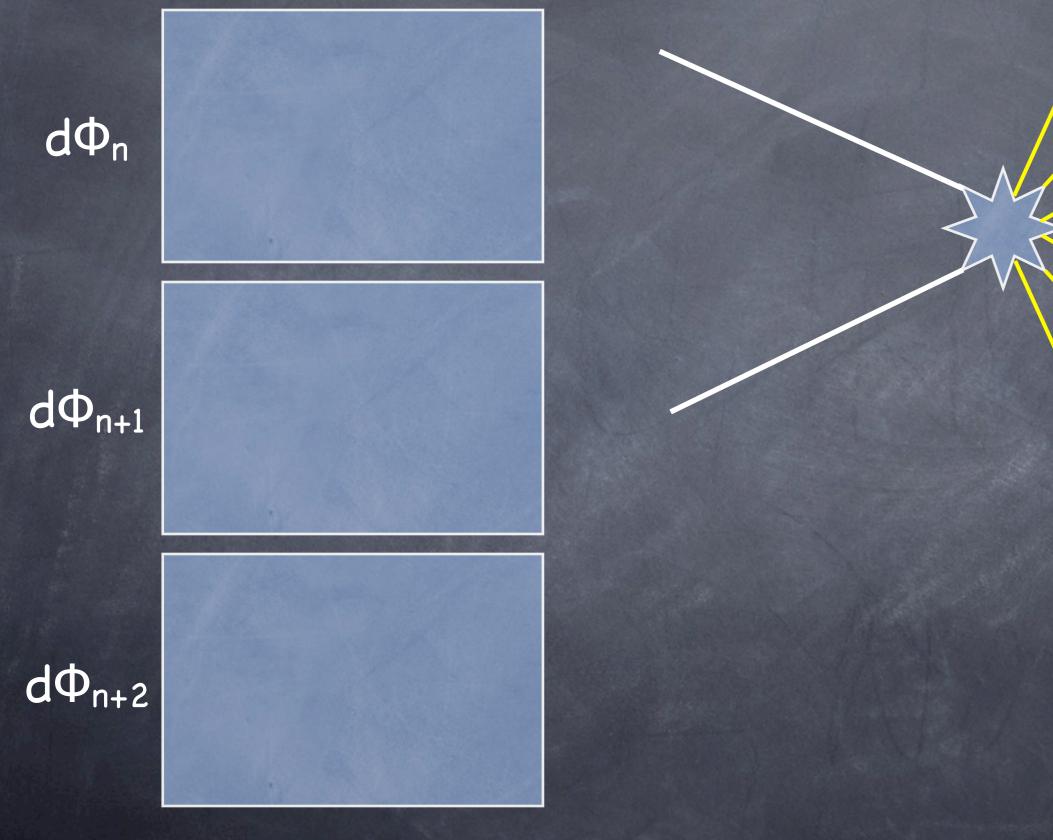
Deal with Problems 3-4 Parton shower algorithms generate phase space recursively $(\Phi_2 \rightarrow \Phi_3 \rightarrow \Phi_4 \rightarrow ...)$

Simple known ways to implement with models of hadronization

Gets the collinear and soft limit correct
 Does not change total cross sections
 If dσ_n^{MC} is merged with parton shower, solve all 4 Problems

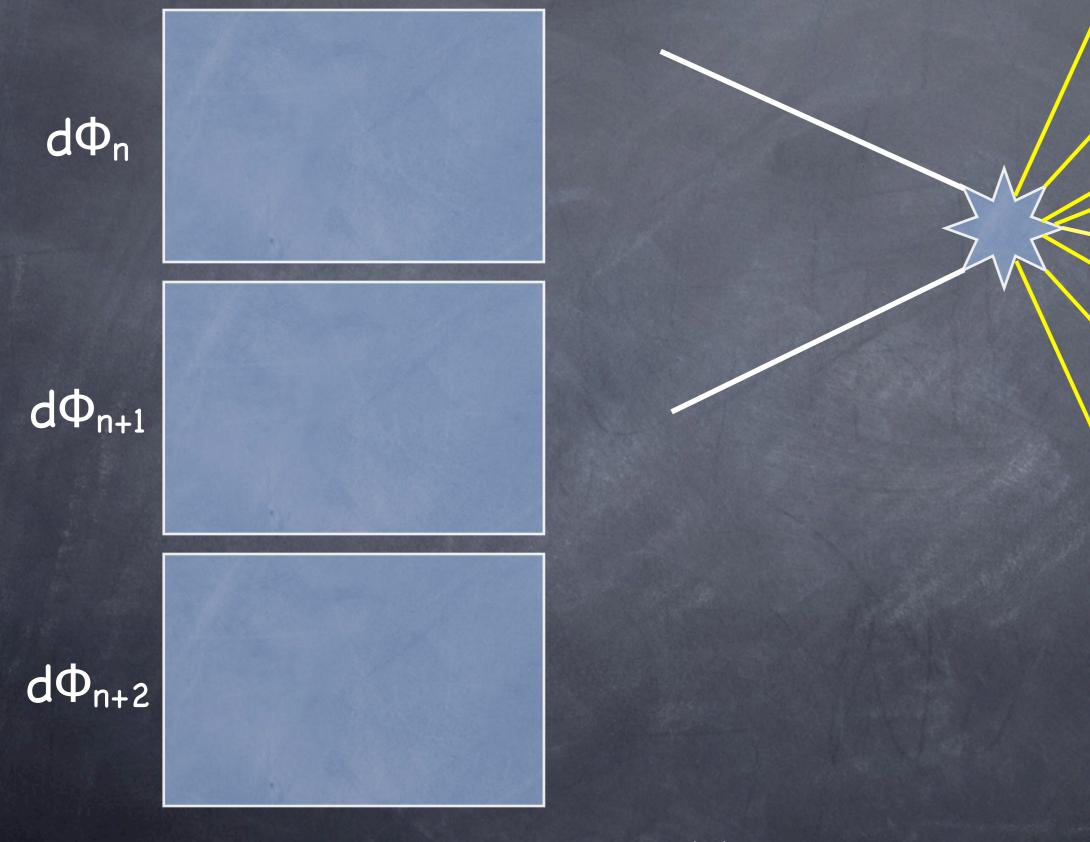
Combining fixed order calculations with Parton showers

Pictoral phase space



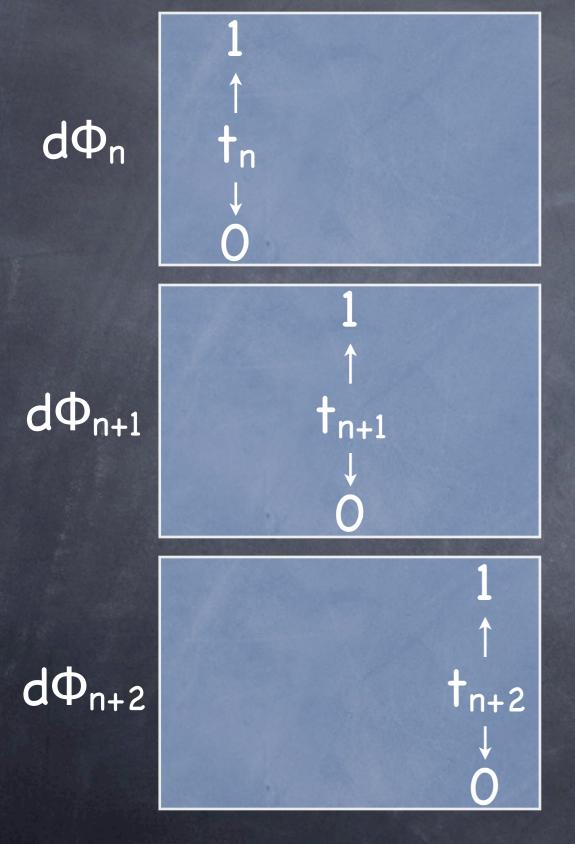
Christian Bauer

Pictoral phase space



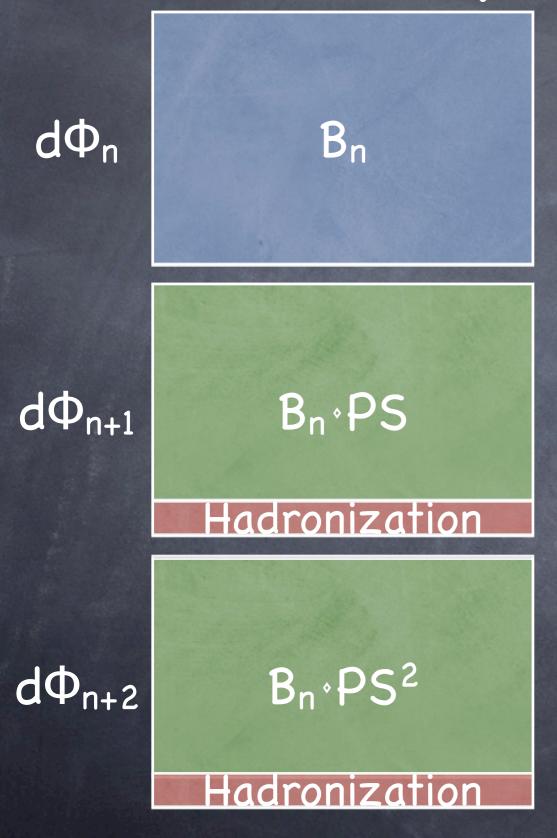
Christian Bauer

Pictoral phase space



Region of Φ_n looks like Φ_{n-1} Define resolution variable t_n $(t_n \rightarrow 0$ in collinear region)

The parton shower



Starts from known B_n

Adds extra emissions via simple algorithm

 Is probabilistic (always sums to the answer started from)

Simple way to attach hadronization at thad

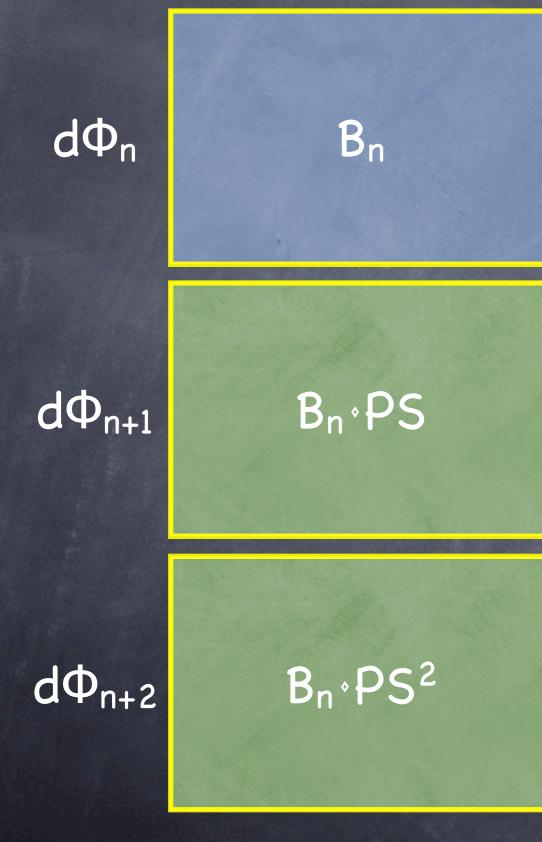
Solves Problems 3-4 as advertised

SLAC, 05/15/09

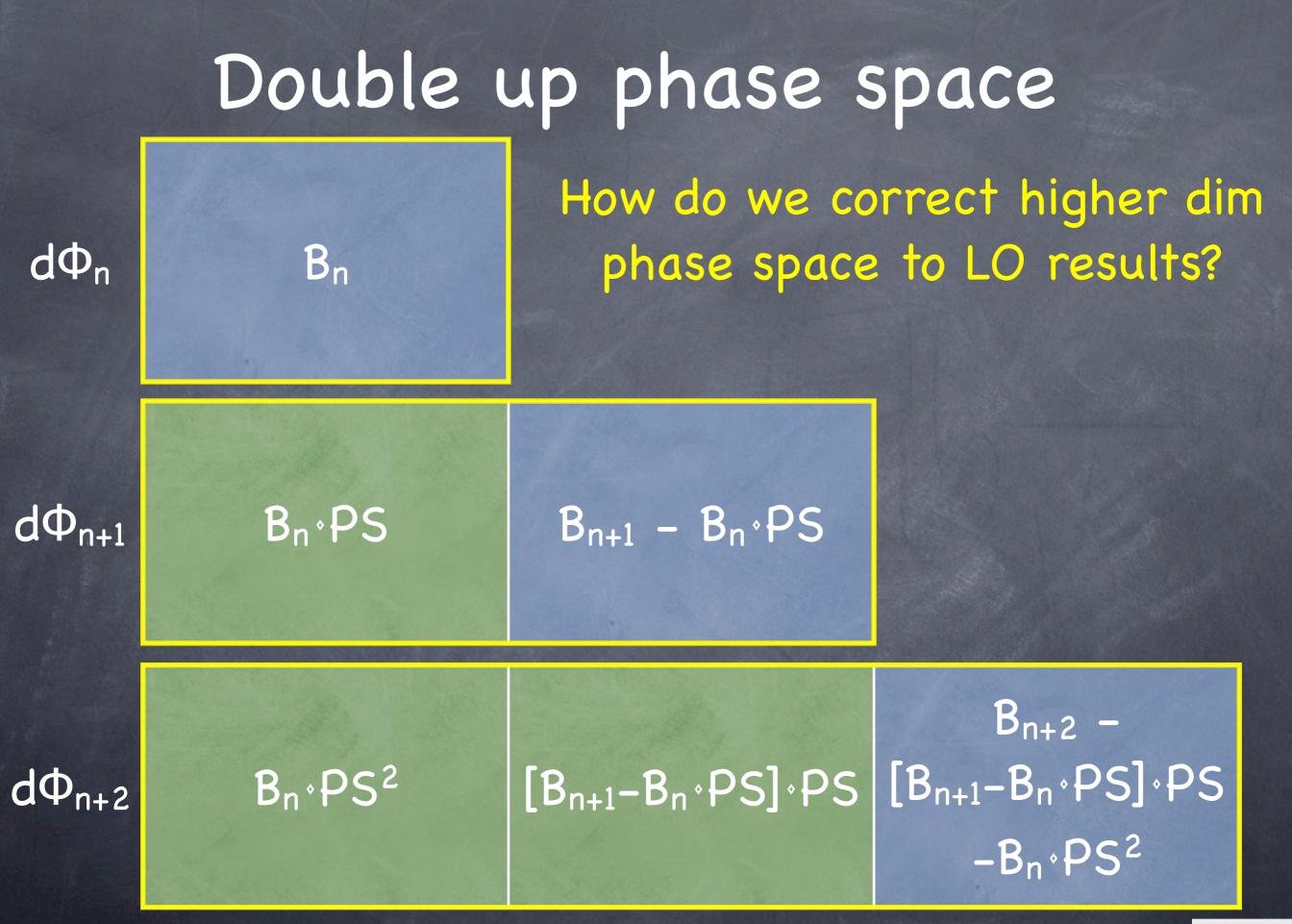
Christian Bauer

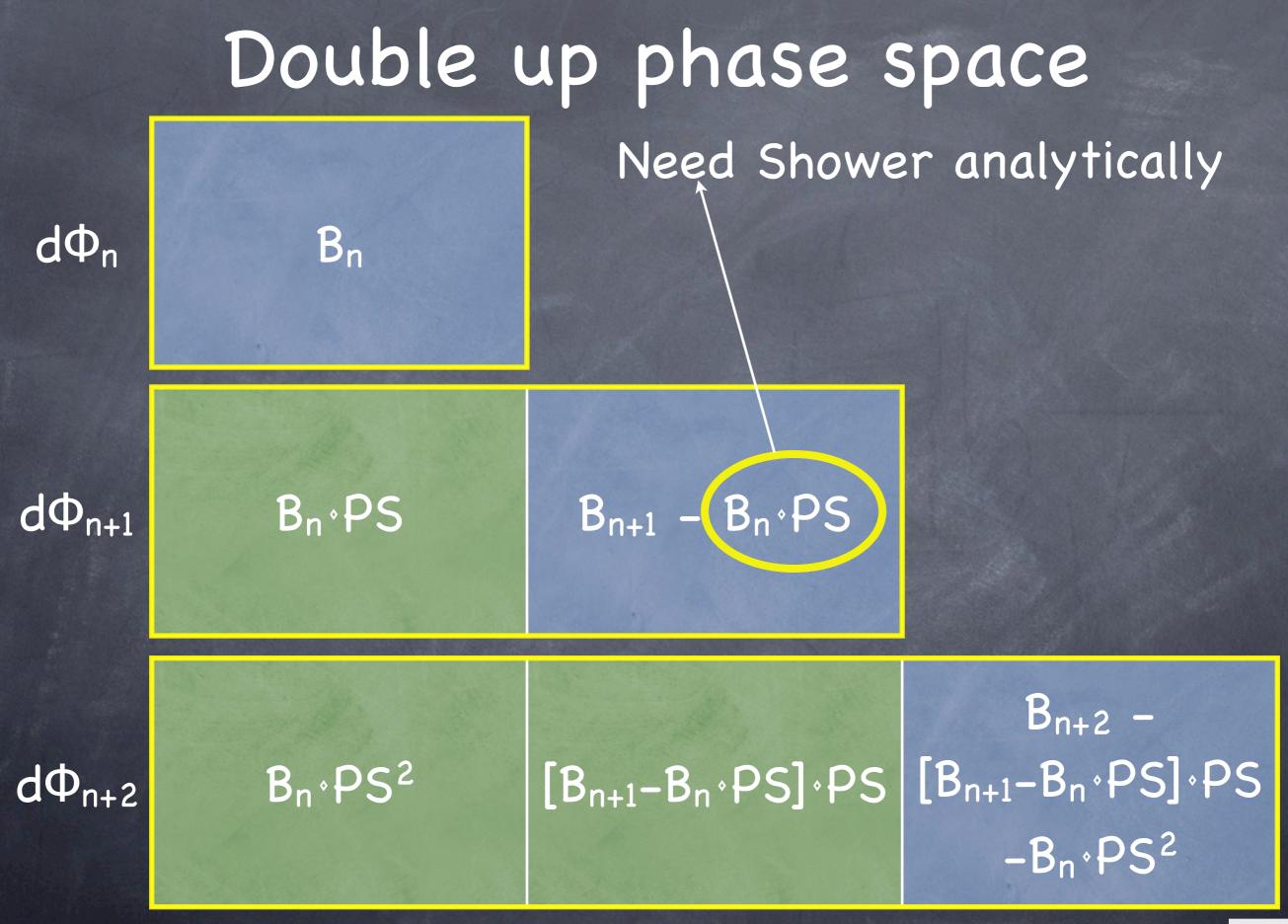
Combining with LO

How do we correct higher dim phase space to LO results?



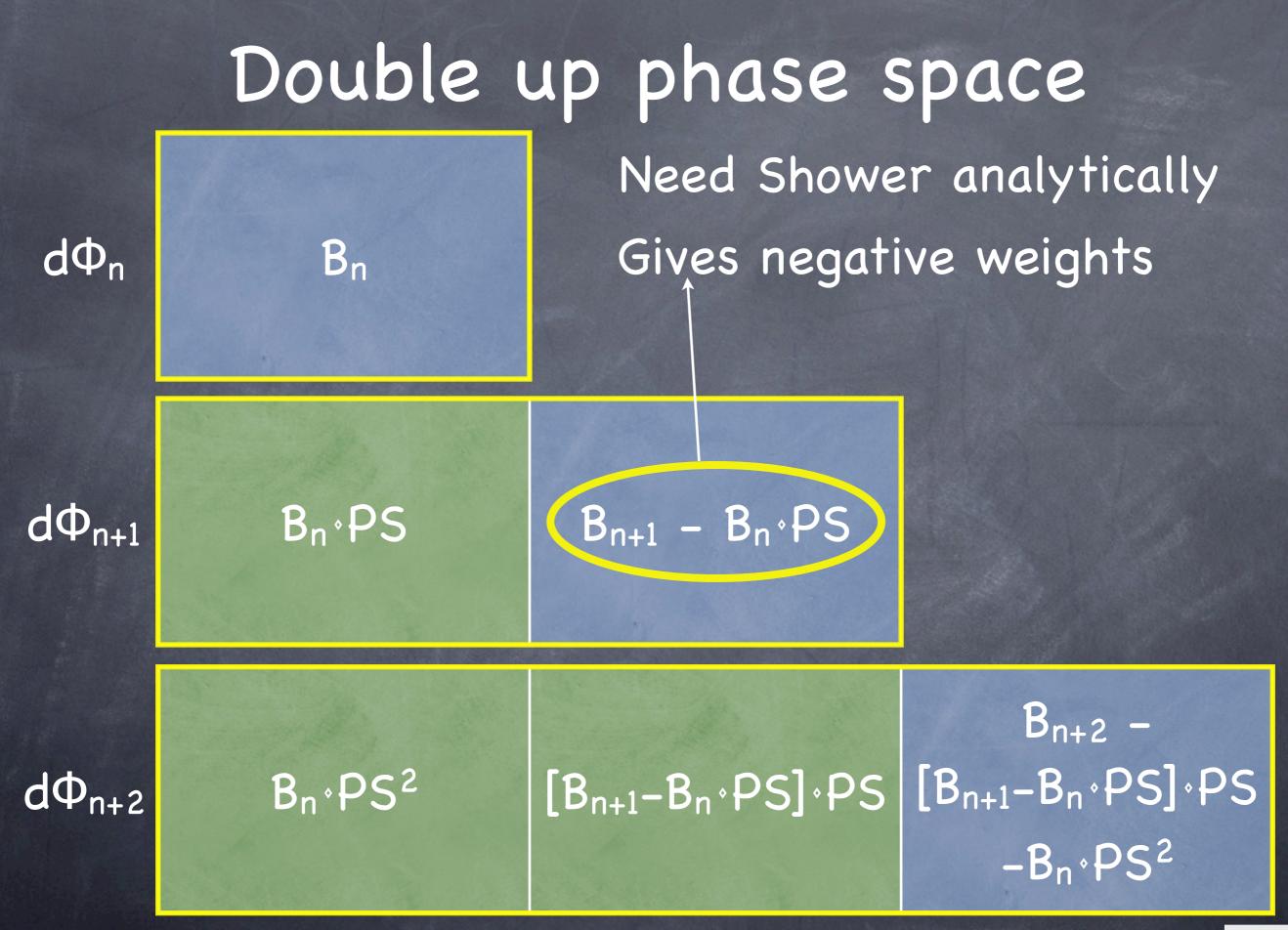
Christian Bauer





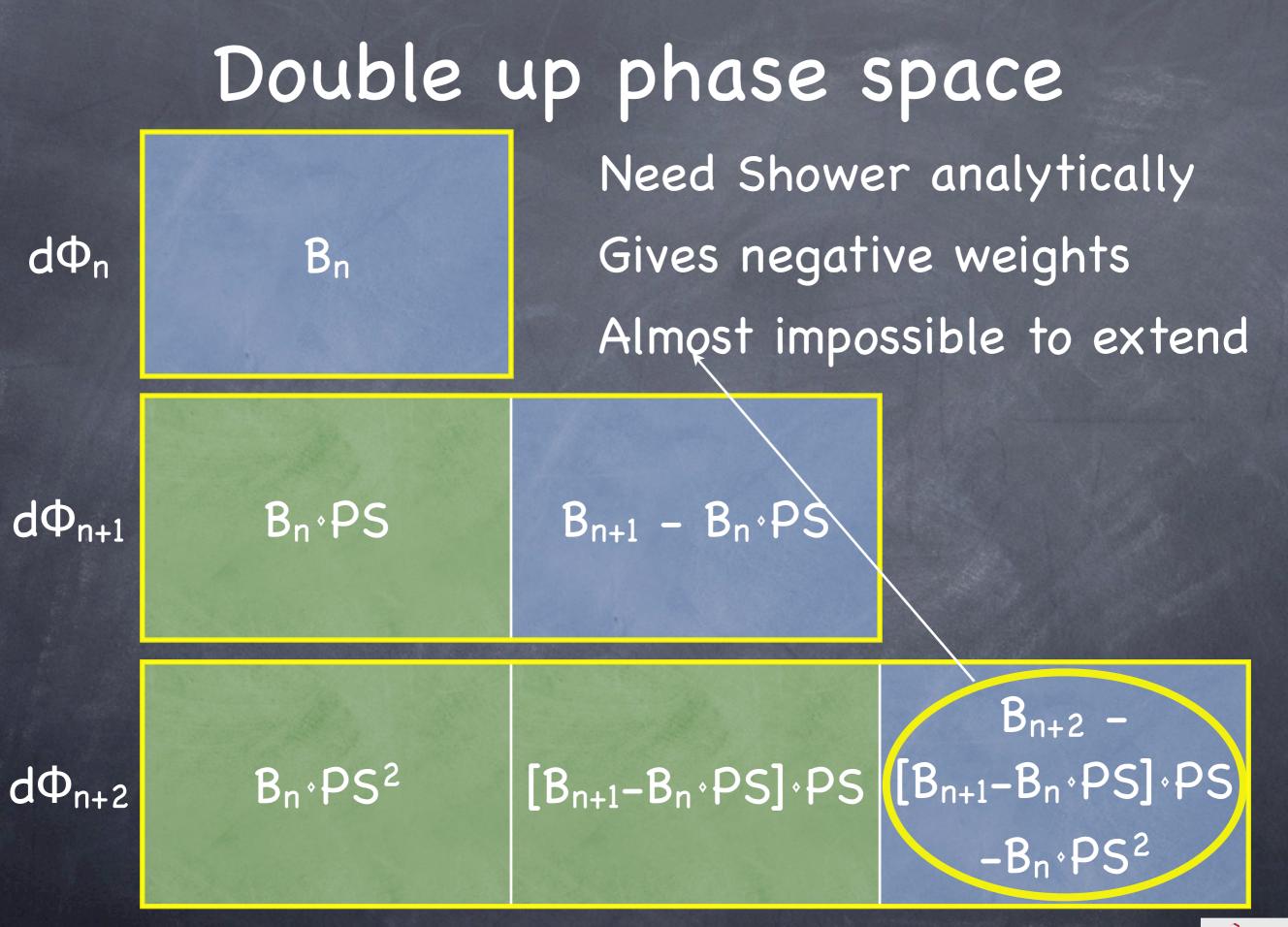
SLAC, 05/15/09

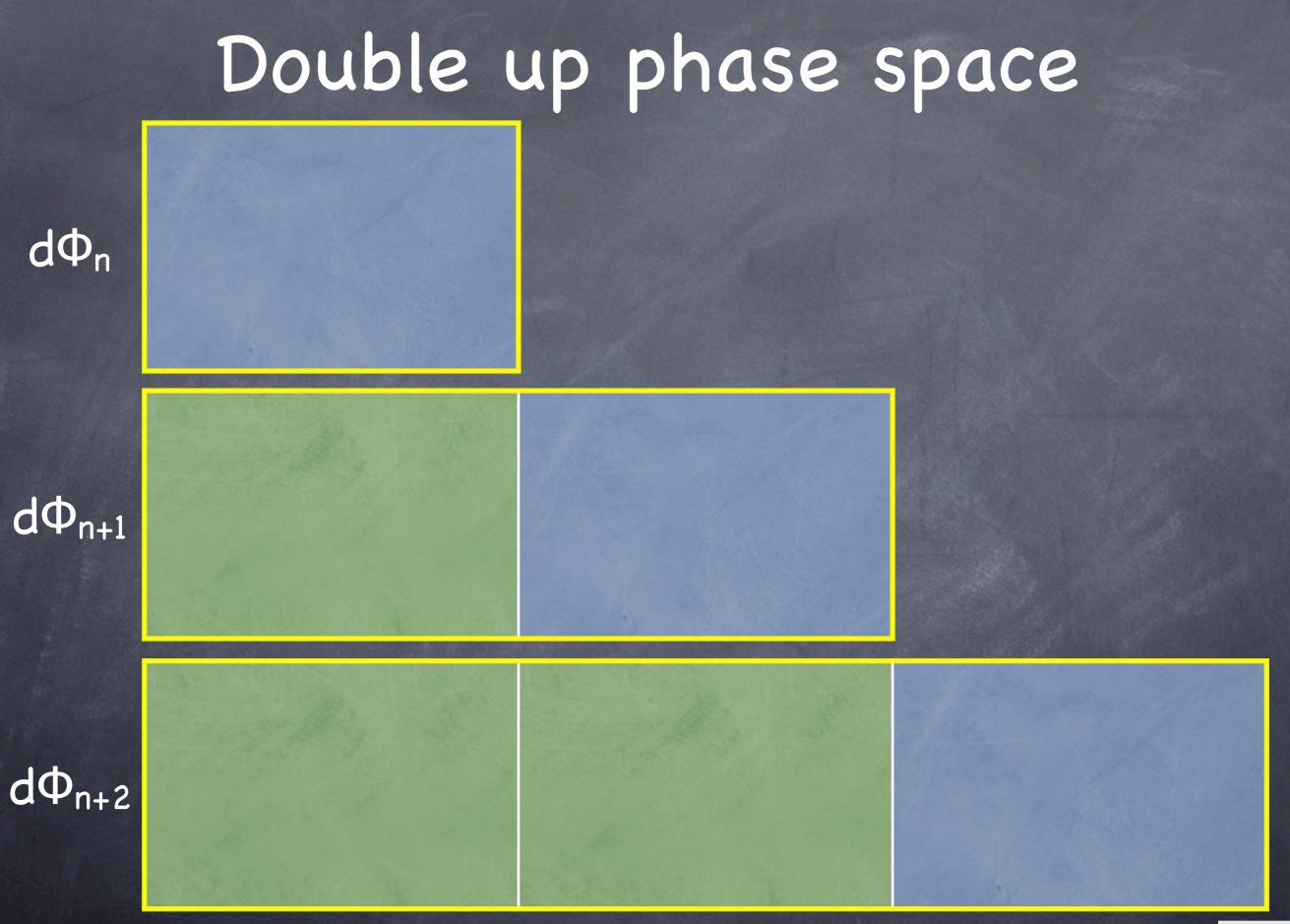
REPKELEY LAR

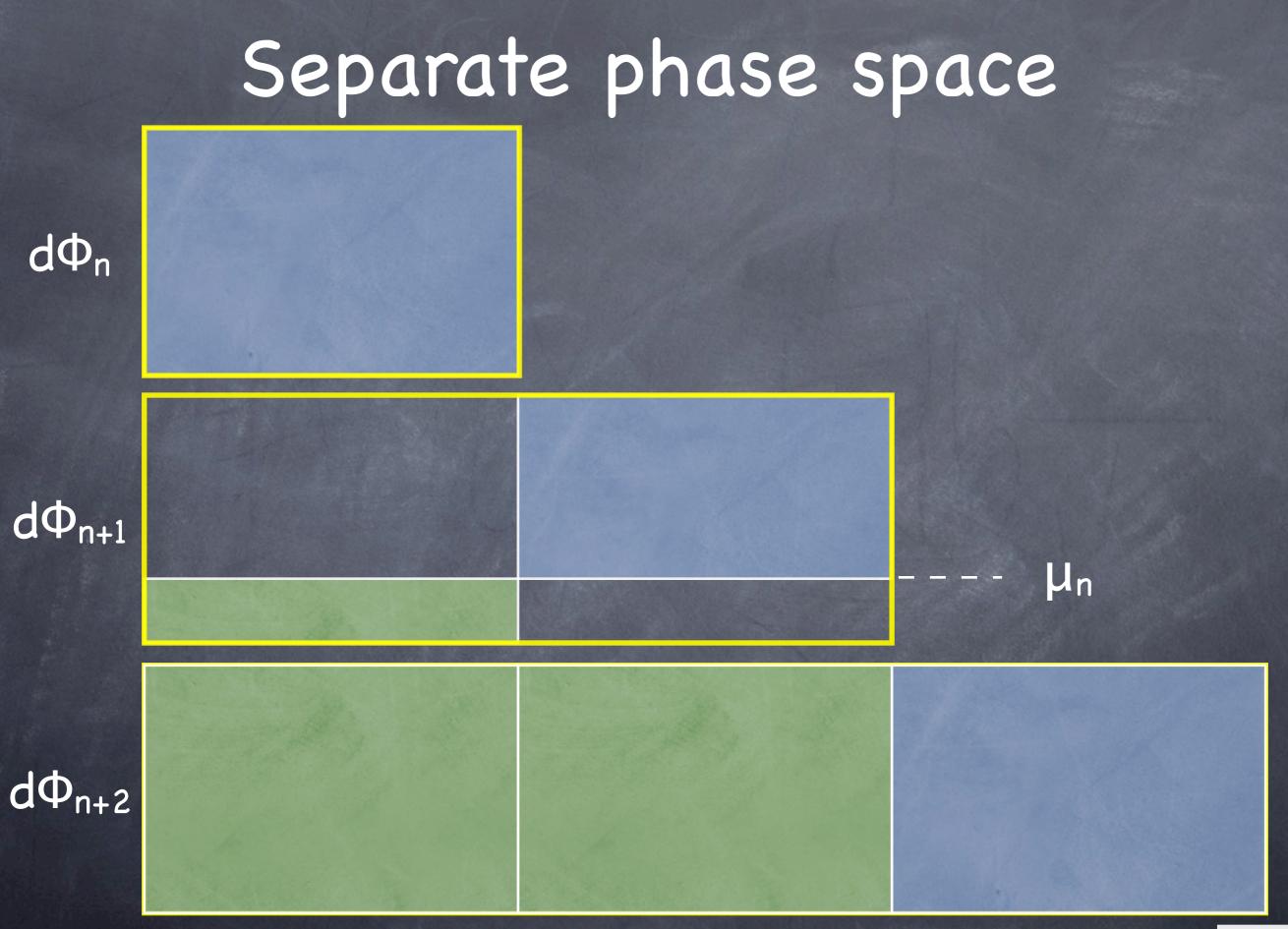


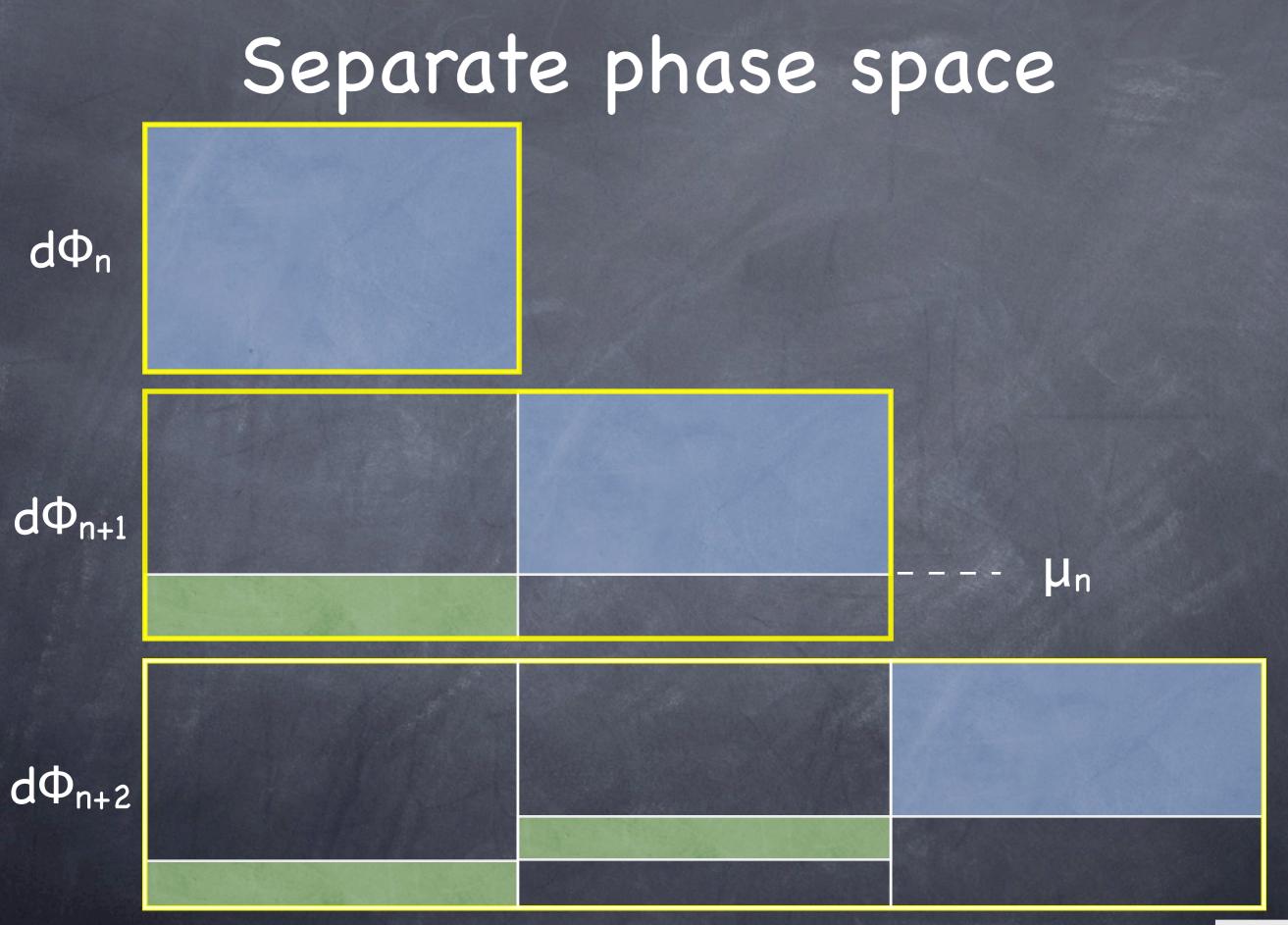
SLAC, 05/15/09

BERKELEY LAB









Separate phase space

Add new samples to fill the empty regions with fixed order calculations

 $d\Phi_n$

$B_n \cdot \Delta_n(\mu_n) PS(\mu_n)$

 $B_n \cdot \Delta_n(\mu_n)$

 $d\Phi_{n+2}$

Christian Bauer

Separate phase space

Add new samples to fill the empty regions with fixed order calculations

 $d\Phi_{n+1}$

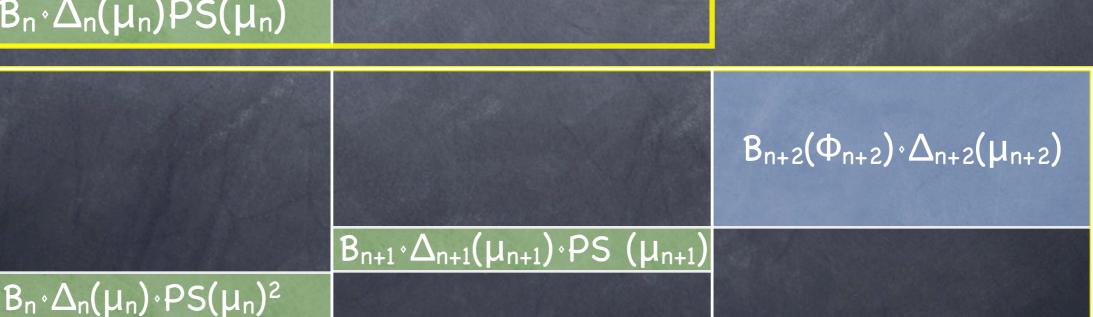
 $d\Phi_n$

 $B_{n+1} \cdot \Delta_{n+1}(\mu_{n+1})$

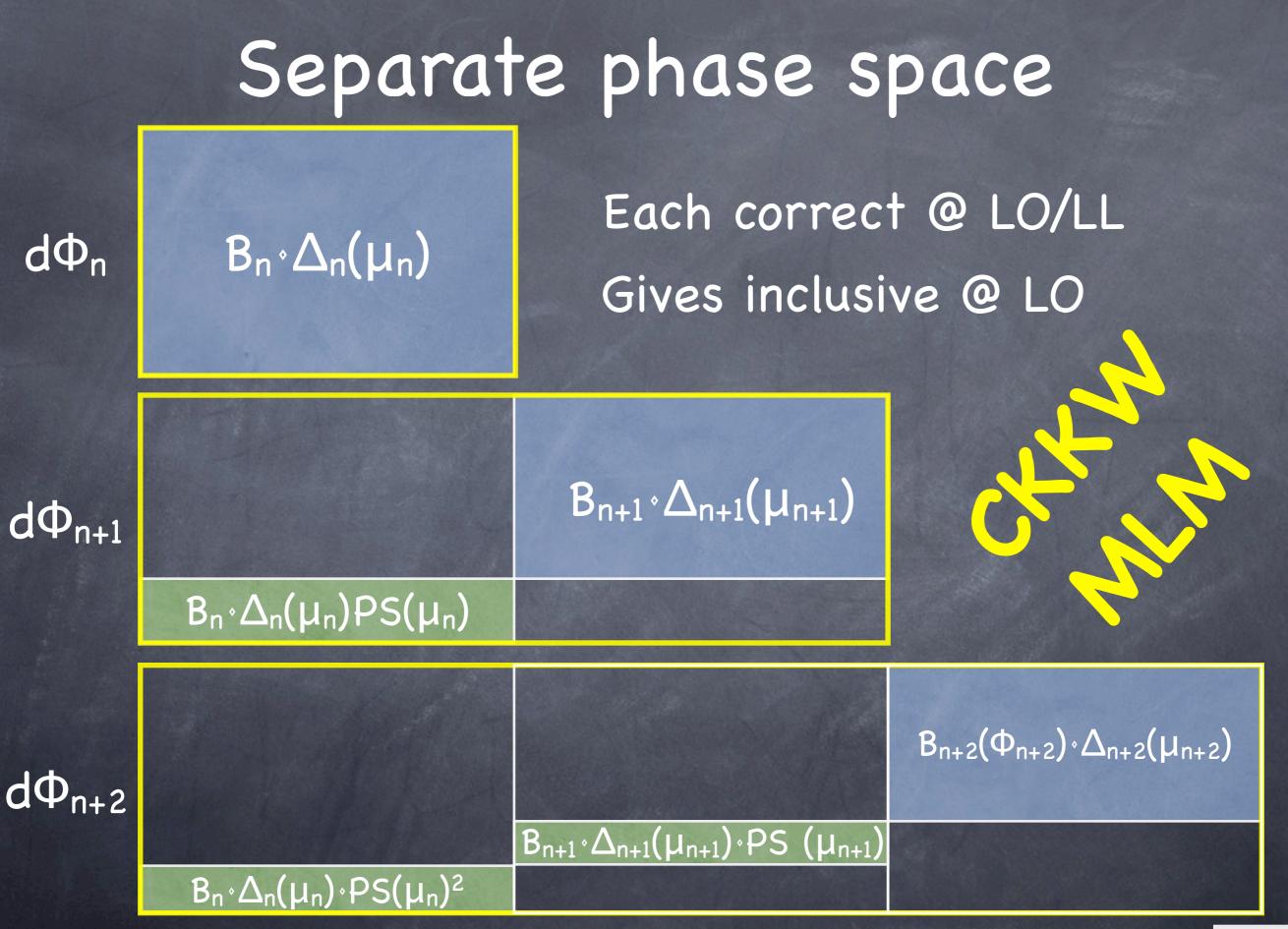
$B_n \cdot \Delta_n(\mu_n) PS(\mu_n)$

 $B_n \cdot \Delta_n(\mu_n)$

 $d\Phi_{n+2}$

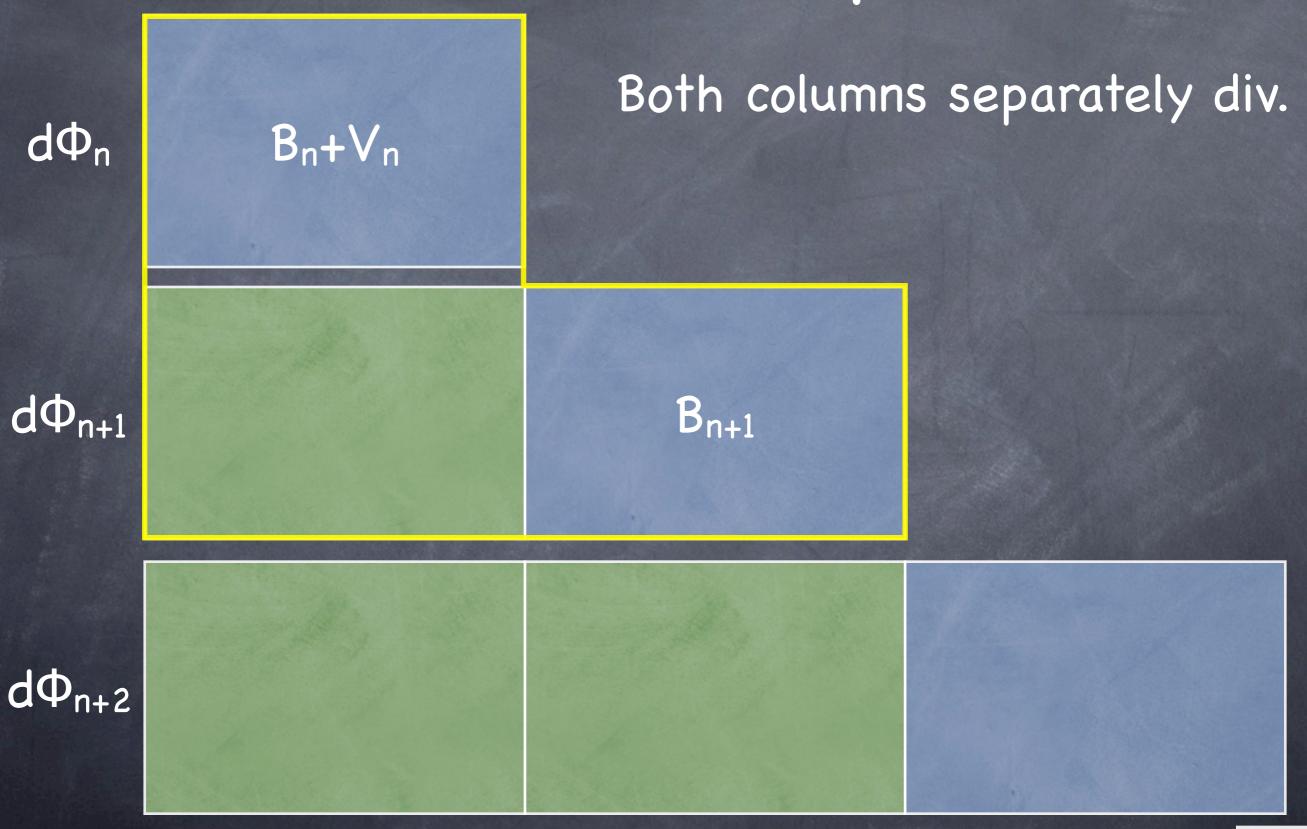


Christian Bauer



The same at NLO

Naive attempt



Christian Bauer

SLAC, 05/15/09

.....

Double up phase space

Both columns separately div. (n+1) row does not sum up

 $d\Phi_{n+1}$

 $d\Phi_n$

 $B_n + V_n$

[B_n+V_n]∘PS

 $d\Phi_{n+2}$

 B_{n+1}

Christian Bauer

Double up phase space

Both columns separately div. (n+1) row does not sum up

 $d\Phi_{n+1}$

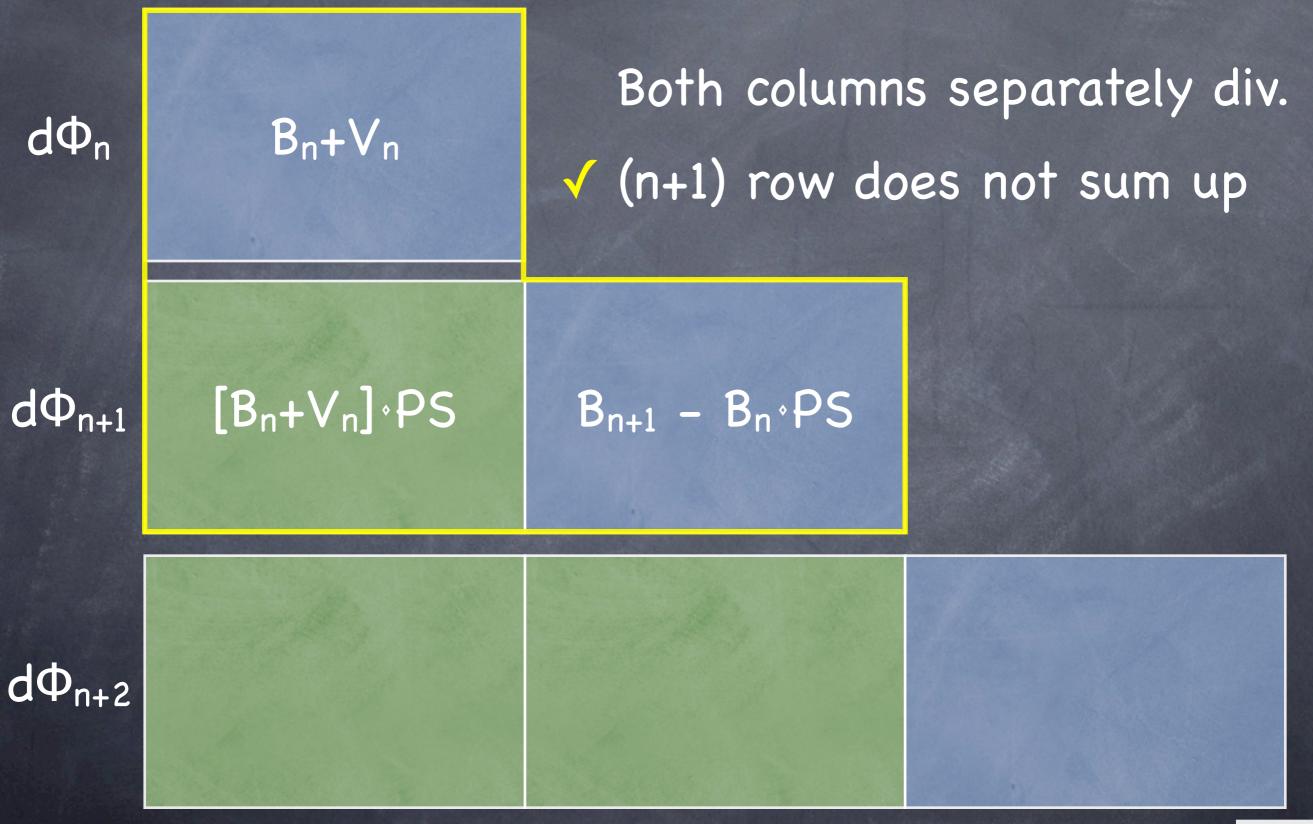
 $d\Phi_n$

 $B_n + V_n$

 $[B_n+V_n] \cdot PS$ B_{n+1} $d\Phi_{n+2}$

Christian Bauer

Naive attempt



Double up phase space

 $B_n+V_n+\int B_n \cdot PS$ \checkmark (n+1) row does not sum up

 $d\Phi_{n+1} \begin{bmatrix} B_n + V_n + \int B_n \cdot PS \end{bmatrix}$

 $B_{n+1} - B_n \cdot PS$

 $d\Phi_{n+2}$

Christian Bauer

 $d\Phi_n$

Double up phase space					
dΦn	$B_n + V_n + \int B_n \cdot PS$	Need Shower analytically Gives negative weights Almost impossible to extend			
$d\Phi_{n+1}$	[B _n +V _n +∫B _n ∘PS] ∘PS	B _{n+1} − B _n · PS			
dΦ _{n+2}					

Separate phase space

 $d\Phi_n$

 $\sigma_n^{\text{incl}} \Delta_n(\mu_n)$

What do I need for (n+1)-body phase space?

 $\frac{\sigma_n^{\text{incl}}}{B_n} B_{n+1} \cdot \Delta_n^B(t_{n+1})$

 $d\Phi_{n+1}$

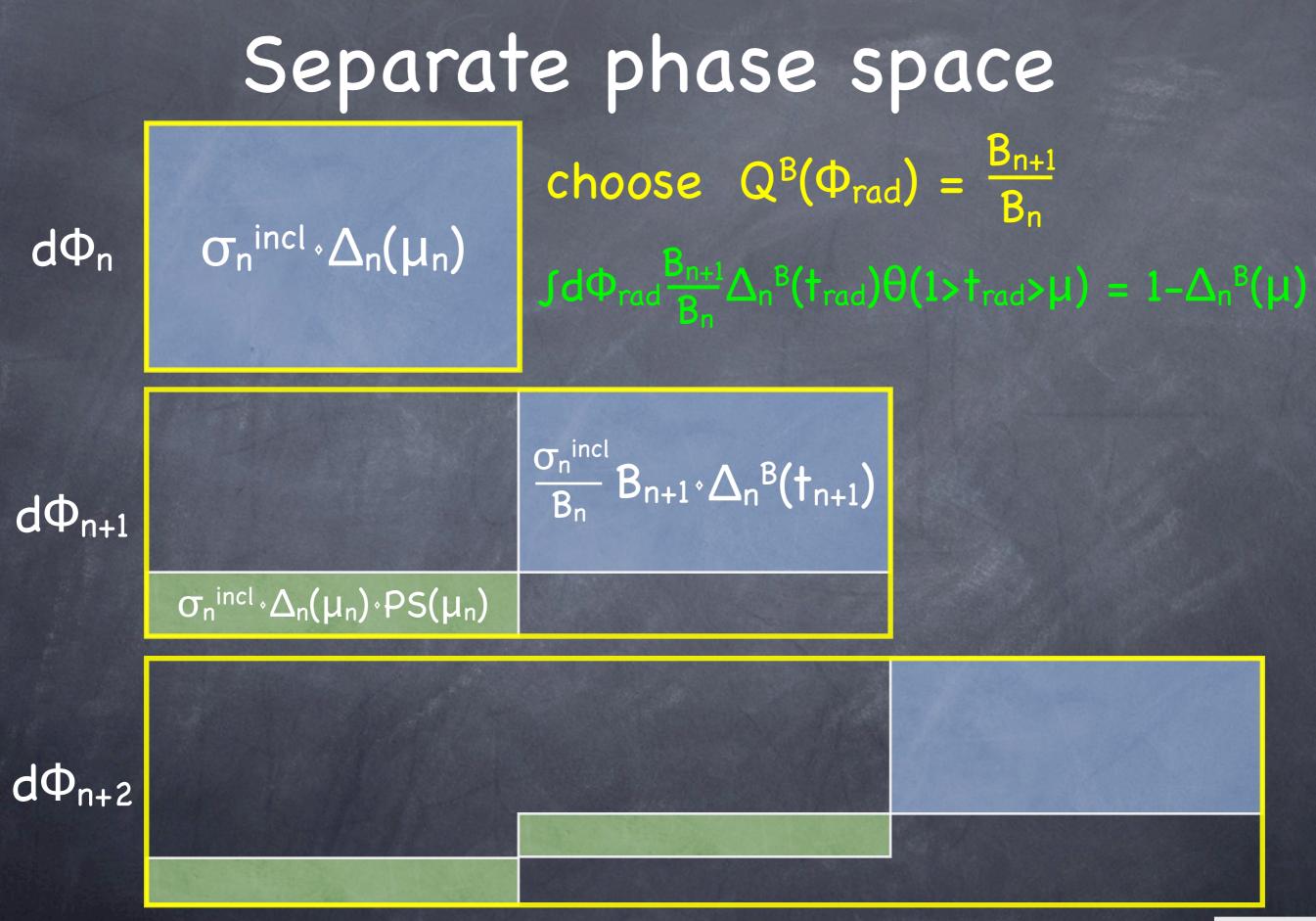
 $\sigma_n^{incl} \Delta_n(\mu_n) PS(\mu_n)$

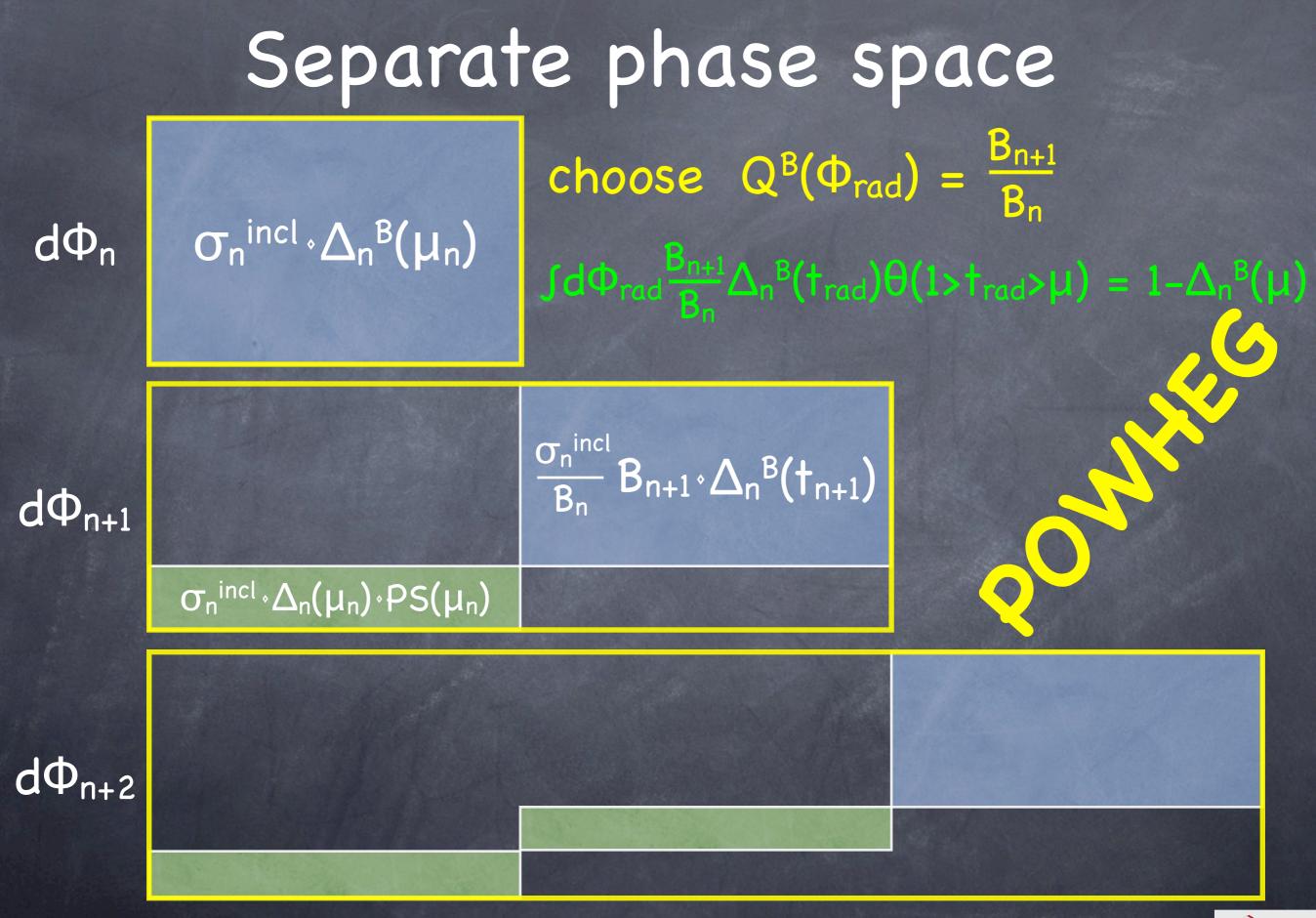
 $d\Phi_{n+2}$

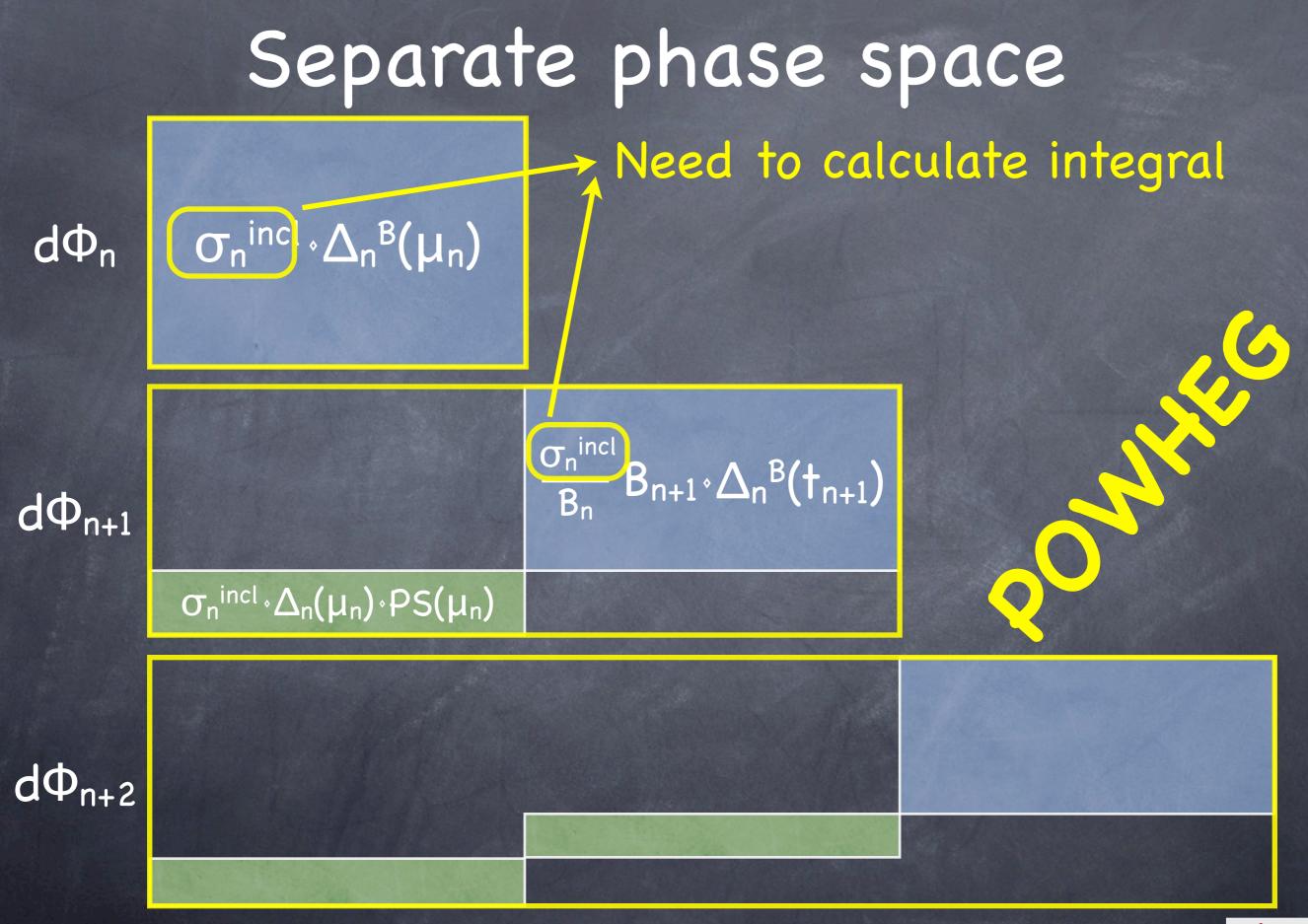
BERKELEY LAB

SLAC, 05/15/09

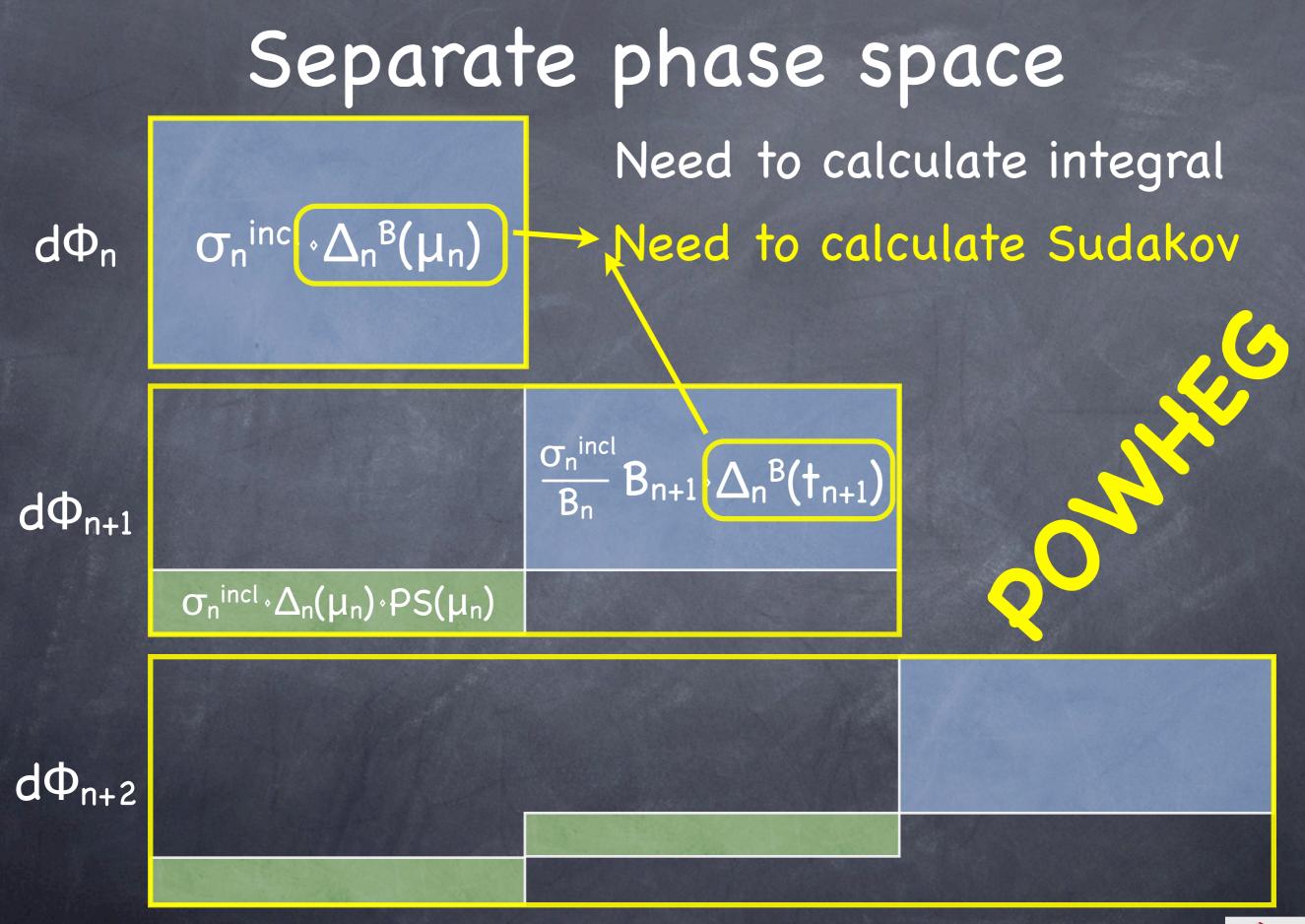
Christian Bauer



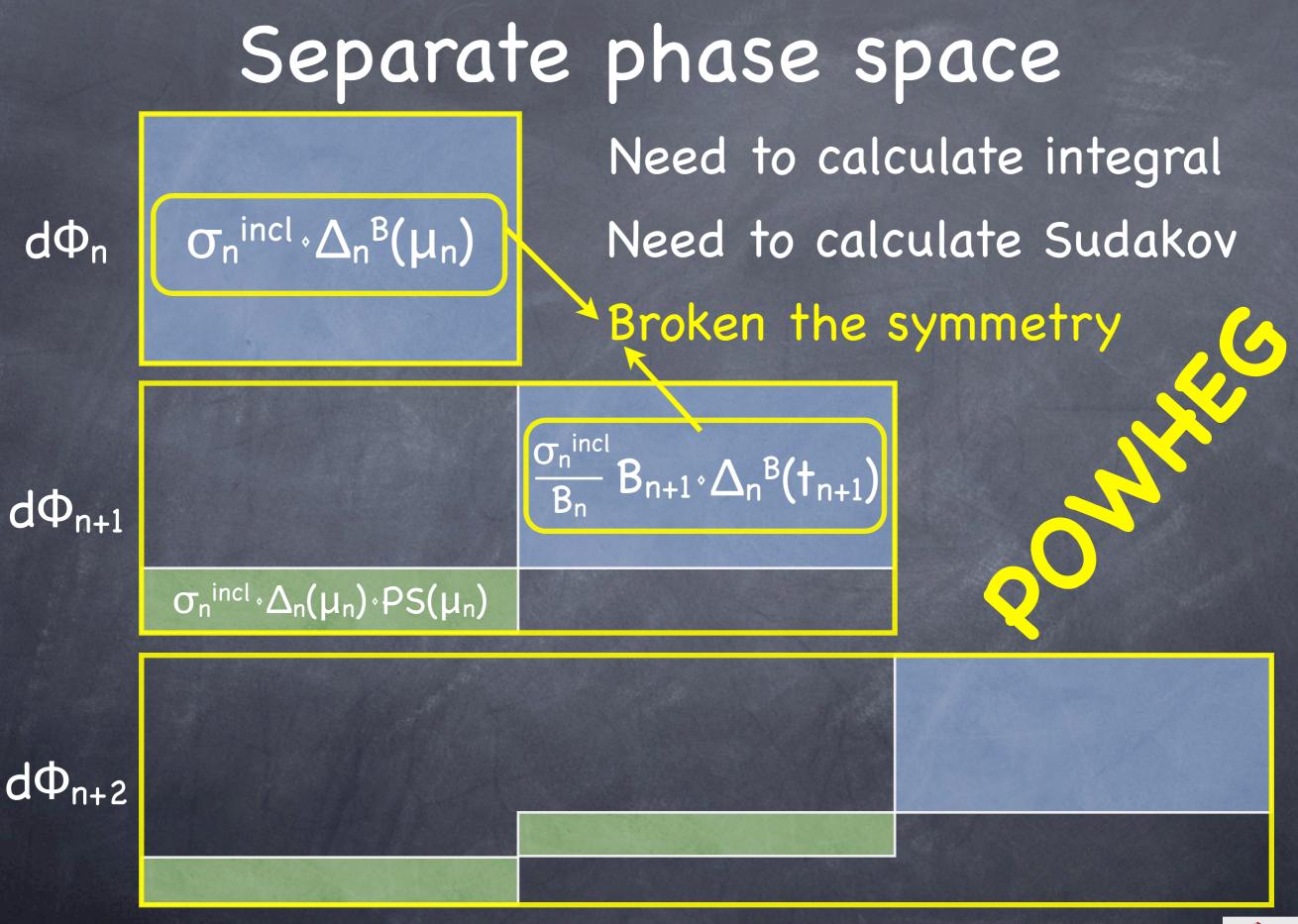


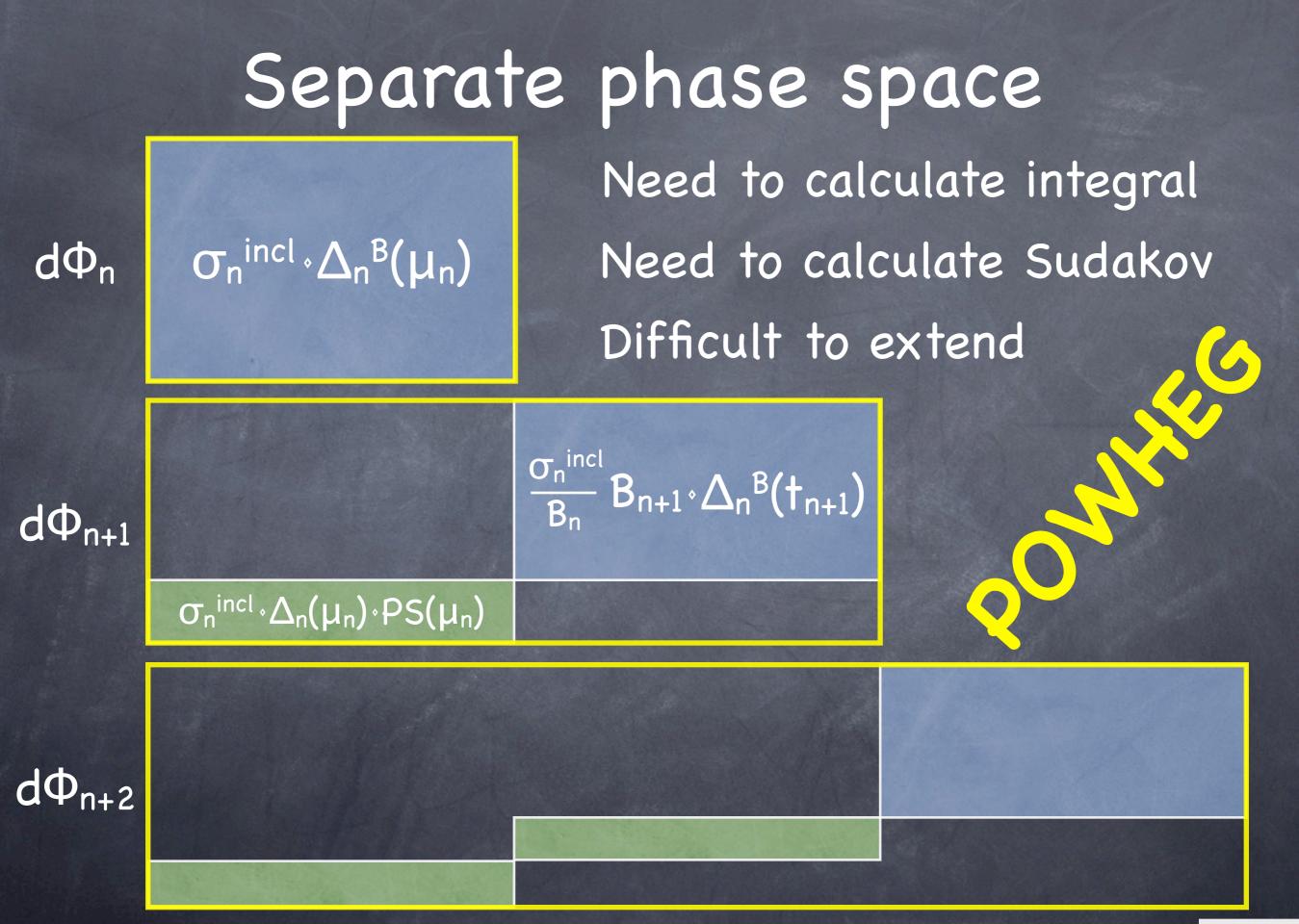


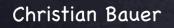
Christian Bauer



Christian Bauer







Our Method

dΦn	$d\sigma_n excl(\mu_n)$ $d\Phi_n$	Each correct @ NLO/LL Gives inclusive @ NLO No gratuitous num integrals	
ქ Φ _{n+1}		$\frac{d\sigma_{n+1}excl(\mu_{n+1})}{d\Phi_{n+1}}$	µn
ΙΦ _{n+2}			$\frac{d\sigma_{n+2}excl(\mu_{n+2})}{d\Phi_{n+2}}$

0

0

Determining the σ^{excl}

Obtain the correct expression at fixed order
Need careful definition of J_{MC} to have analytical results
Write expression that has correct logarithmic structure
Use parton shower ideas as a guidline
Combine the two results by a simple matching

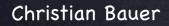
Fixed order results

Deriving a generic expression

$$\frac{\mathrm{d}\sigma_n^{\mathrm{excl}}(\mu_n)}{d\Phi_n} = \frac{\mathrm{d}\sigma_n^{\mathrm{parton}}}{d\Phi_n} + \int \mathrm{d}\Phi'_{n+1} \frac{\mathrm{d}\sigma_{n+1}^{\mathrm{parton}}}{d\Phi_n} J_{\mathrm{MC}}(\Phi'_{n+1}, \Phi_n, \mu_n)$$

Final result for small μ_n

$$\frac{\mathrm{d}\sigma_n^{\mathrm{excl}}(\mu_n)}{d\Phi_n} = B_n(\Phi_n) + V_n(\Phi_n) + \int \mathrm{d}\Phi'_{n+1} S_{n+1}(\Phi'_{n+1}) J_{\mathrm{MC}}(\Phi'_{n+1}, \Phi_n, \mu_n)$$



Fixed order results

$$\frac{\mathrm{d}\sigma_n^{\mathrm{excl}}(\mu_n)}{\mathrm{d}\Phi_n} = B_n(\Phi_n) + V_n(\Phi_n) + \int \mathrm{d}\Phi'_{n+1} S_{n+1}(\Phi'_{n+1}) J_{\mathrm{MC}}(\Phi'_{n+1}, \Phi_n, \mu_n)$$

Need to choose J_{MC} such that analytically calulable

Write S as sum over different terms

$$S_{n+1}(\Phi'_{n+1}) = \sum_{i} S_{n+1}^{(i)}(\Phi'_{n+1})$$

For each i can find $J_{MC}^{(i)}$ for that allows to integrate

$$\mathrm{d}\Phi_{n+1} S_{n+1}^{(i)}(\Phi_{n+1}) J_{\mathrm{MC}}^{(i)}(\Phi_{n+1}, \Phi_n, \mu_n)$$

Therefore, can choose

$$J_{\rm MC}(\Phi'_{n+1}, \Phi_n, \mu_n) = \sum_{i} \frac{S_{n+1}^{(i)}(\Phi'_{n+1})}{S_{n+1}(\Phi'_{n+1})} J_{\rm MC}^{(i)}(\Phi'_{n+1}, \Phi_n, \mu_n)$$

Example: Catani-Seymour
Different term for each of three partons [(i)
$$\rightarrow$$
 ij,k]
singularity $p_i \cdot p_j \rightarrow 0$
with k recoil
$$\begin{aligned}
\sum_{i} \equiv \sum_{ij,k} \\ factorization for each {ij,k} \\ d\Phi_{n+1} \equiv d\Phi_n^{ij,k} d\Phi_{rad}^{ij,k} \\ d\Phi_{rad} \\ dy^{ij,k} dz^{ij,k} d\phi^{ij,k} \\ dy^{ij,k} dz^{ij,k} dz^{ij,k} dz^{ij,k} dz^{ij,k} dz^{ij,$$

Nagy, Trocsanyi ('98)

BERKELEY LAB

Correct logarithmic structure Use the fact that parton shower resums leading logarithmic terms

Write cross section in recursive form

$$\begin{bmatrix} \mathrm{d}\sigma_n^{\mathrm{PS}} \\ \mathrm{d}\Phi_n \end{bmatrix} = \begin{bmatrix} \mathrm{d}\sigma_{n-1}^{\mathrm{PS}} \\ \mathrm{d}\Phi_{n-1} \end{bmatrix} \times PS$$

Several subtleties, but can be done

Combine results

Use slightly generalized LL result

$$\left[\frac{\mathrm{d}\sigma_n^{\mathrm{MC}}(\mu_n)}{\mathrm{d}\Phi_n}\right] = \sum_i \left(\left[\frac{\mathrm{d}\sigma_{n-1}^{\mathrm{MC}}}{\mathrm{d}\Phi_{n-1}}\right] Q^{(i)}(\Phi_{n-1\to n}) + M_n^{(i)}(\Phi_n) \right) \Delta_n(\mu_n)$$

Choose splitting functions as

$$Q^{(i)}(\Phi_{n-1\to n}) = \frac{S_n^{(i)}(\Phi_n)}{B_{n-1}(\Phi_{n-1})}$$

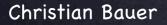
Determine matching coefficient by explicit comparison with previous NLO result

Determining the σ^{excl} By expanding to NLO order and comparing with known results, can obtain Mn

$$M_{n}^{i_{n},(0)}(\Phi_{n}) = S_{n}^{i_{n}}(\Phi_{n}) \begin{pmatrix} B_{n}(\Phi_{n}) \\ S_{n}(\Phi_{n}) \end{pmatrix} - 1 \end{pmatrix}$$
$$M_{n}^{i_{n},(1)}(\Phi_{n}) = S_{n}^{i_{n}} \begin{pmatrix} V_{n}^{S}(\Phi_{n},\mu_{n}) \\ S_{n}(\Phi_{n}) \end{pmatrix} - \begin{pmatrix} V_{n-1}^{S}(\Phi_{n-1}^{i_{n}},t_{n}^{i_{n}}) \\ B_{n-1}(\Phi_{n-1}^{i_{n}}) \end{pmatrix} - \Delta_{n}^{(1)}(t_{n}^{i_{n}},\mu_{n}) \end{pmatrix}$$

The treeKnownThe virtualExpansion oflevelsubtraction(1-loop)the Sudakovdiagramsfunctionsdiagramsfunction

Everything known analytically!

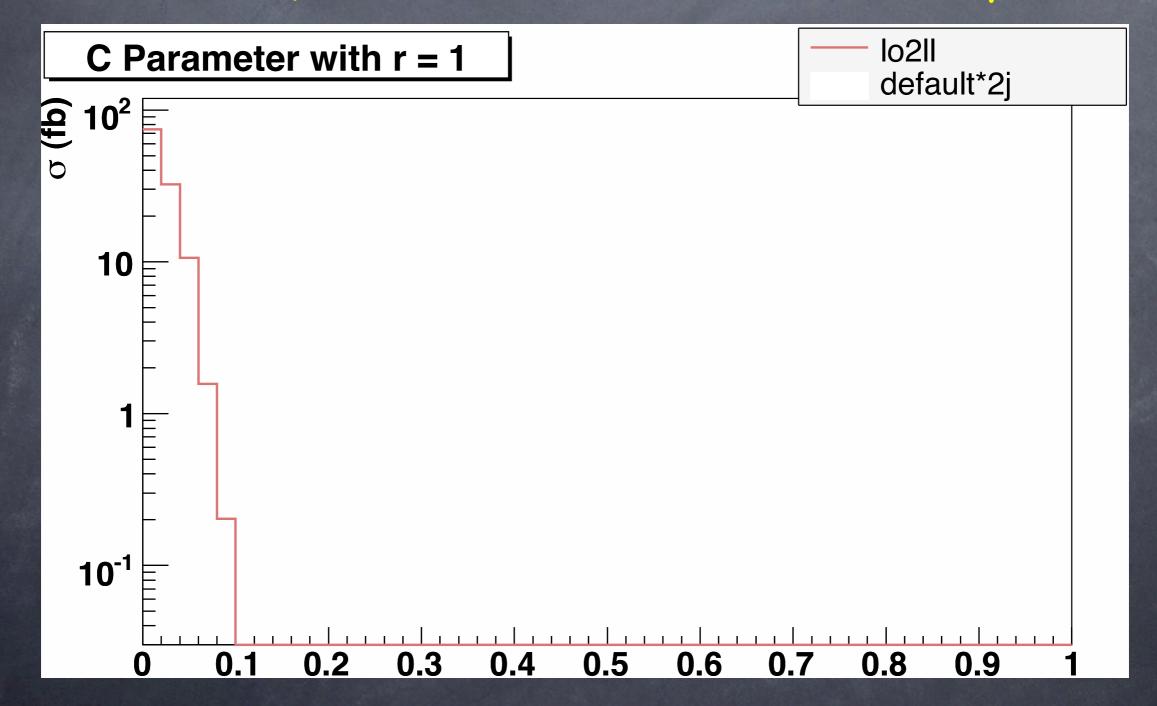


Status of the work?

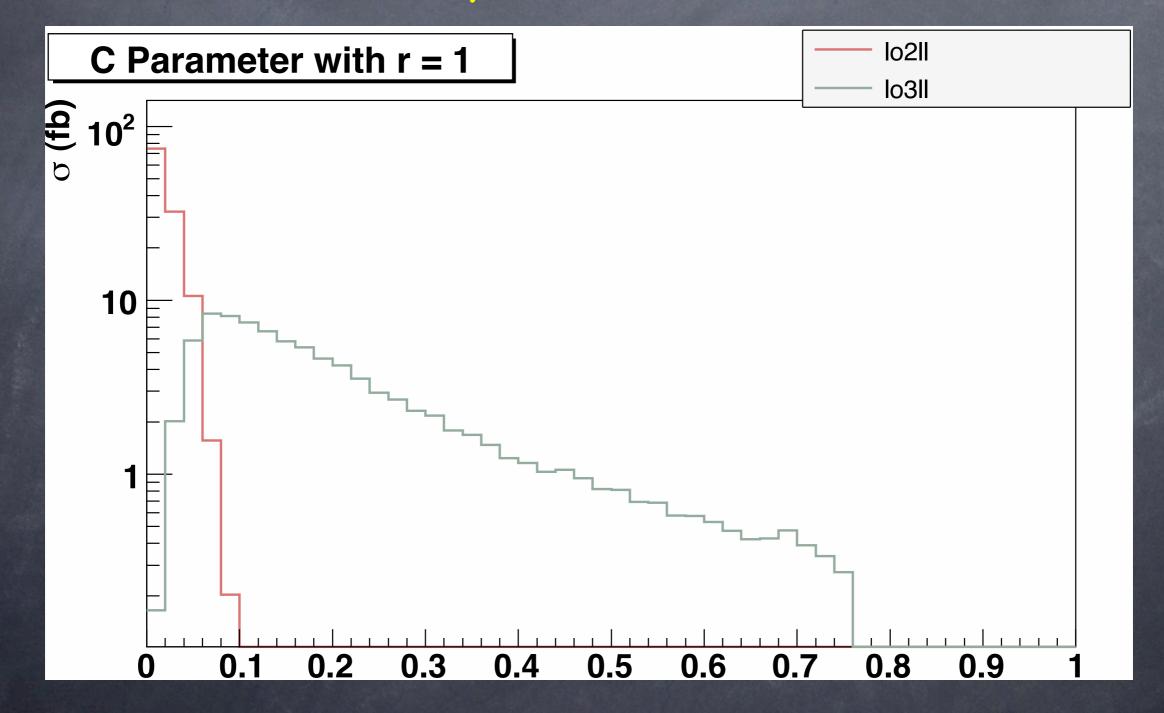
Have all the analytical results worked out in detail for e⁺e⁻

Currently debugging implementation in GenEvA for e⁺e⁻

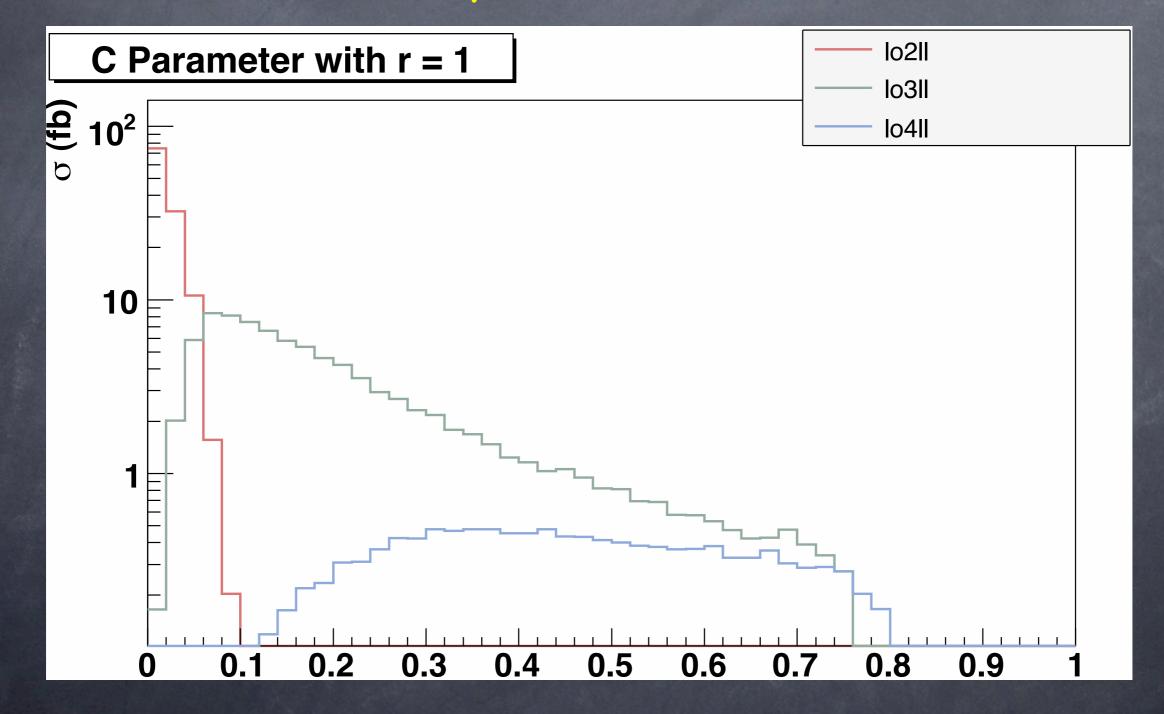
Just 2-body LO matrix element, NLO improved



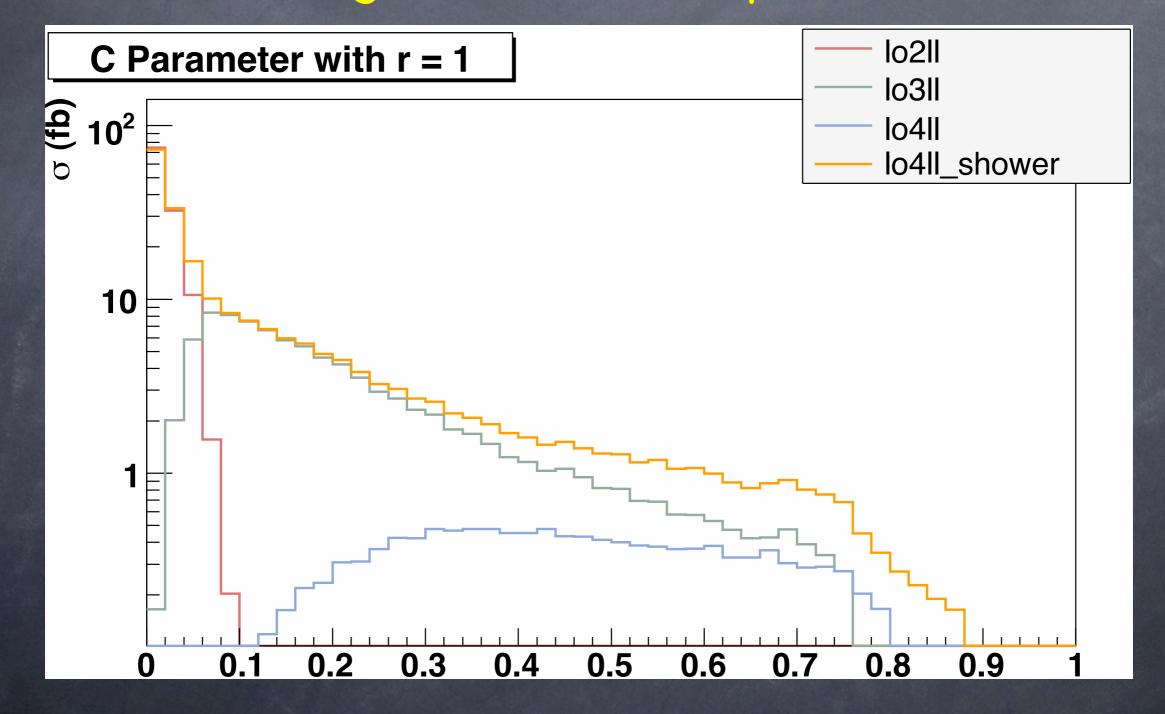
Add 3-body LO matrix element



Add 4-body LO matrix element

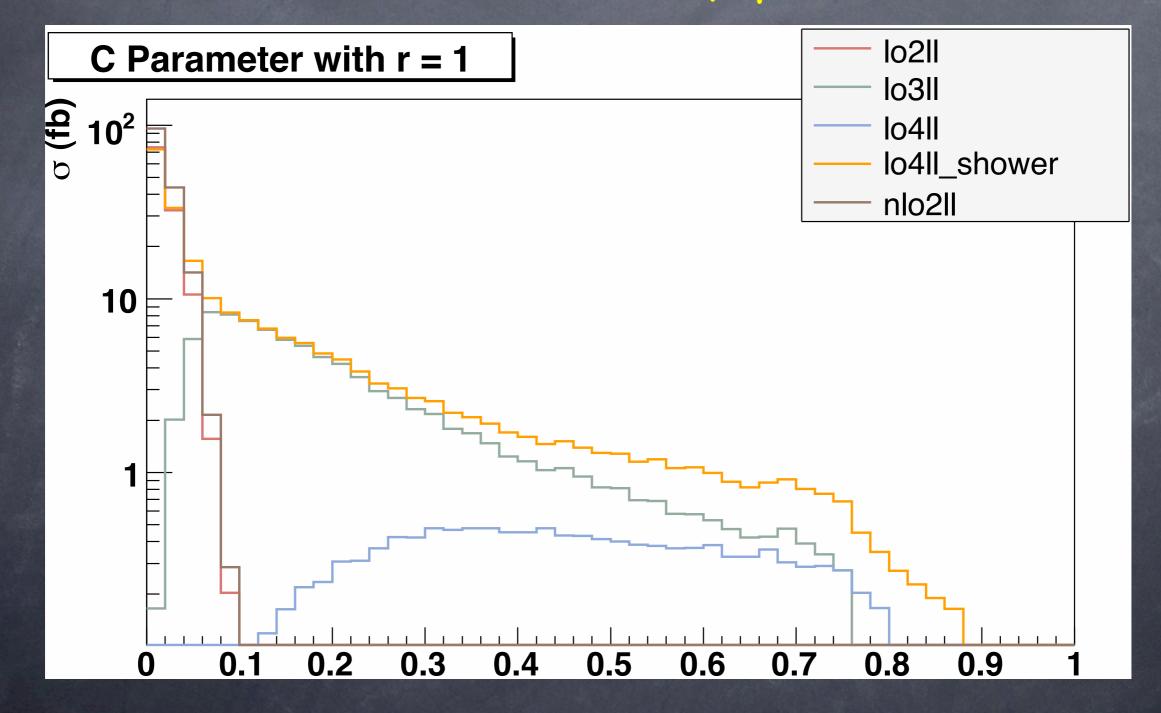


Combine together and add parton shower



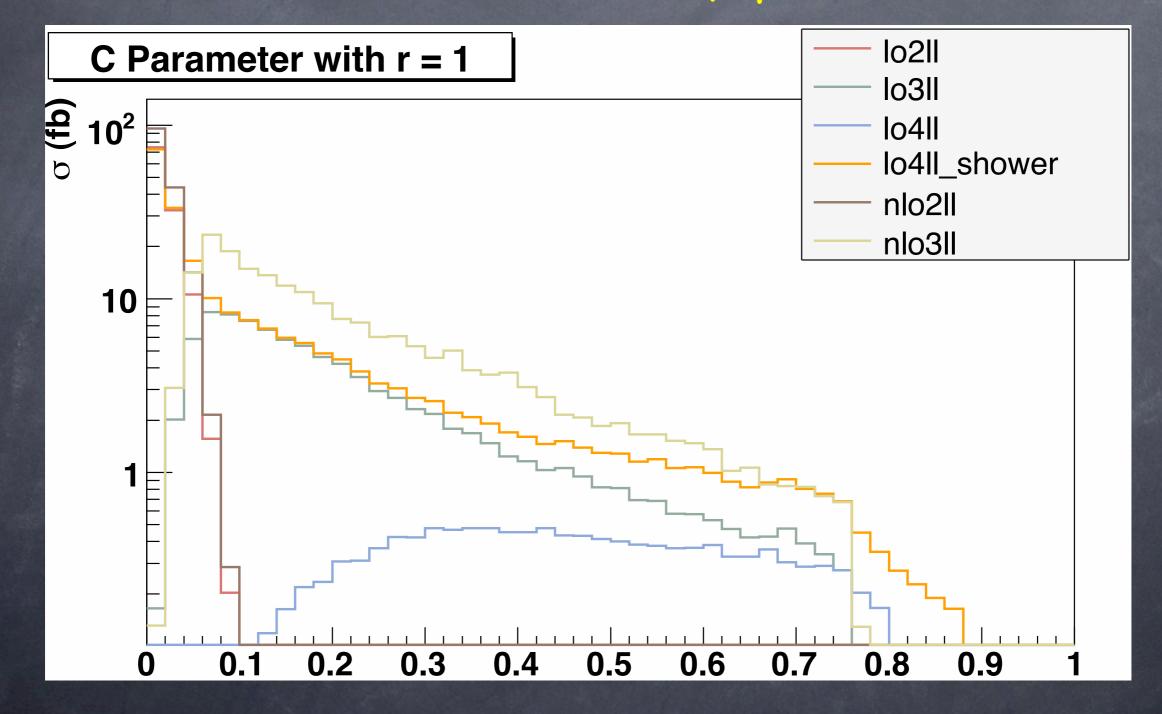
Christian Bauer

Use NLO for 2-body process



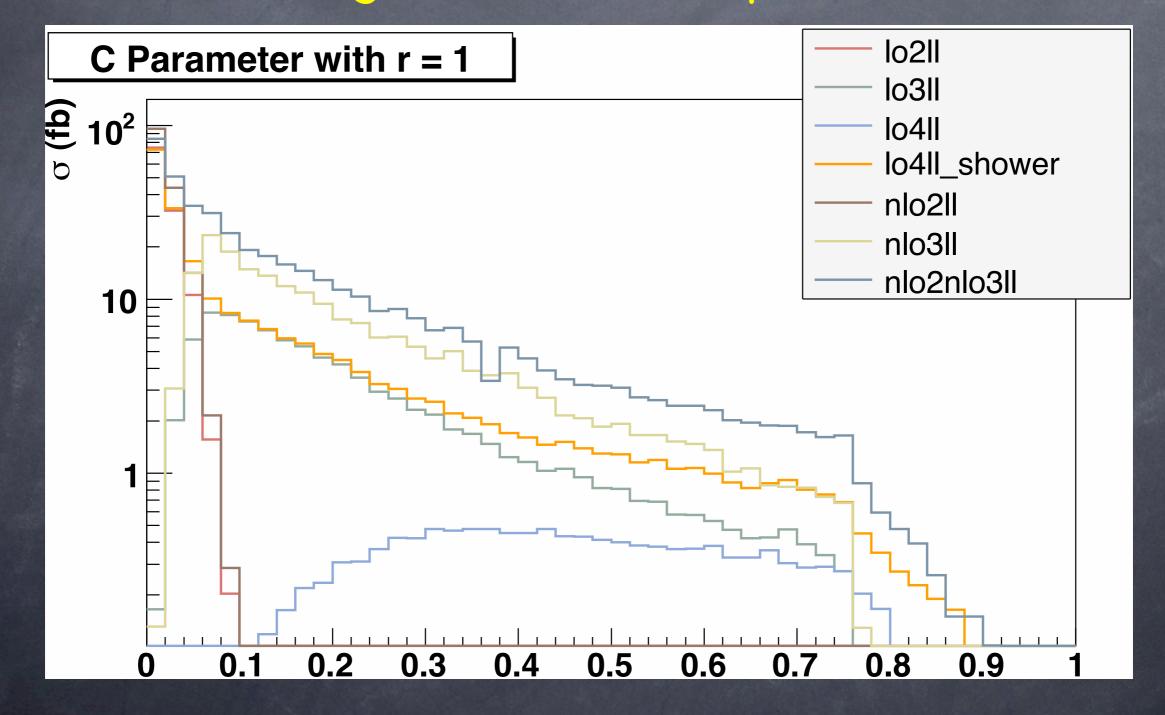
Christian Bauer

Use NLO for 3-body process



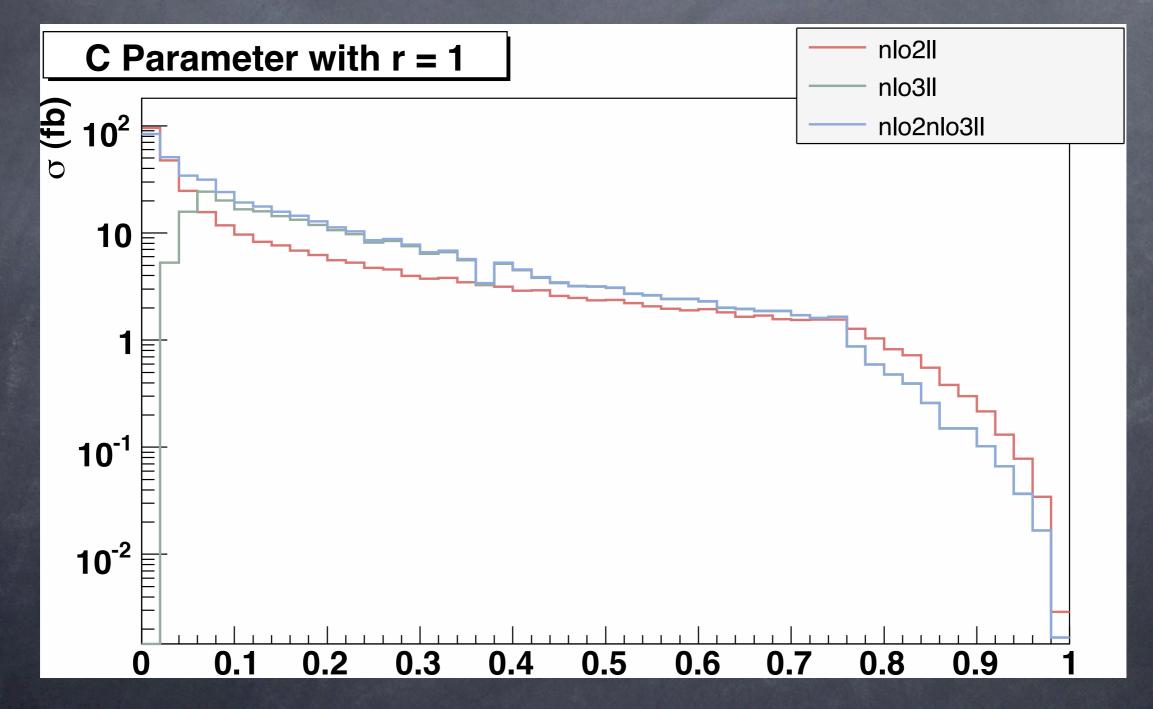
Christian Bauer

Combine together and add parton shower



Christian Bauer

Show NLO Cascade with lower cut on shower



Status of the work?

Have all the analytical results worked out in detail for eter

Currently debugging implementation in GenEvA for e⁺e⁻

Working on extension to allow for hadron colliders

Hope to have first numerical results by the summer

Christian Bauer

Conclusions

Both NLO calculations and parton shower algorithms crucial to have detailed understanding of signals and backgrounds
Need to merge the two approaches to get reliable and trustworthy results
Four main problems that need to be addressed
Believe we have a fast and efficient algorithm that should give us first results by the summer

