Z' Bosons On and Off the Resonance Peak (and at low energy)

Seth Quackenbush

University of Wisconsin-Madison

Outline

- What is a Z'? How do we see it?
- Why do we care?
- A reasonably general model template: couplings to SM particles—discriminates without reference to a particular model!
- First stab: forming effective couplings from on-peak measurements
- Second stab: measuring Z' interference off-peak
- Finally: adding next-generation low-energy experiments

What is a Z'?

- A new Drell-Yan resonance (pp→l⁺l⁻)
- Neutral, colorless
- Boson, pick your spin:
 - 0 (e.g. RP-violating sneutrino)
 - 1 (e.g. gauge boson)
 - 2 (e.g. KK graviton)

Why do we care?

- Ubiquitous in extensions to SM
- Clean signature at LHC; very small dilepton background
- Good discovery reach

We find one! What now?

- Locate resonance peak, determine mass
- Measure spin by studying angular distribution; requires few hundred events (~ 10 fb⁻¹)

Allanach, et. al

The framework

- We know the mass and spin—start with spin 1
- Goal: accommodate as many models as possible—from favorites to ones nobody's thought of
- What assumptions to make at LHC?
- Need to parametrize model space; will do this in terms of Z' couplings to SM particles
- Too many parameters!

Parameter reduction

- Most likely candidates for parameter reduction:
- 1. Make couplings generation-independent (no FCNC)
- 2. Left-handed doublets have same coupling (avoids generating Z-Z' mass mixing)

The parameters

- Assume spin 1 Z' found. The cross section depends on:
- The mass, M_{z}
- Z' charges of SM particles (absorb overall coupling):

$$q_L$$
, u_R , d_R , e_L , e_R (couples to fermions as $g_L(1-\gamma_5)/2 + g_R(1+\gamma_5)/2$)

• The width, Γ_{7}

What can we measure?

- Asymmetry (A_{FB}):
 does lepton scatter
 with quark or
 against?
- Z' rapidity (Y):
 different u/d PDFs
 yield different Z'
 rapdity distributions
 (more valence u at
 high x)

Asymmetry

$$A_{FB} = \frac{F - B}{F + B}$$

- LHC is pp collider which direction is the quark direction?
- High rapidity Z's tend to come from valence quark (high x) and sea antiquark (low x)
- Higher rapidity, better odds you guess correct quark direction

Putting them together

- Z' Rapidity discriminates relative amount of u vs. d
- Asymmetry gives us parity-symmetric vs. antisymmetric information in couplings, but quark direction correlation depends on rapidity

Putting them together

- Z' Rapidity discriminates relative amount of u vs. d
- Asymmetry gives us parity-symmetric vs. antisymmetric information in couplings, but quark direction correlation depends on rapidity
- "You got chocolate in my peanut butter!" "You got peanut butter in my chocolate!"

Structure of Z' cross section

Can we use these observables to extract coupling information?

$$\frac{d^2\sigma}{dY\,dcos\,\theta} = \sum_{q=u,d} \left[a_1^{q'}(q_R^2 + q_L^2)(e_R^2 + e_L^2) + a_2^{q'}(q_R^2 - q_L^2)(e_R^2 - e_L^2) + b_1q_Le_L + b_2q_Le_R + b_3^qq_Re_L + b_4^qq_Re_R \right] + c$$

- Mass dependence, PDFs, kinematics in a, b, c coefficients of model parameters
- a terms are Z'-only pieces
- b terms are Z' interference with Z, photon
- c is SM background (Z, photon, their interference)

First stab: On-peak

- b, c not important on-peak
- Width dependence of a's known on-peak (NWA): absorb into effective couplings

$$\begin{split} c_{q} &= \frac{M_{Z'}}{24 \pi \Gamma_{Z'}} (q_{R}^{2} + q_{L}^{2}) (e_{R}^{2} + e_{L}^{2}) \\ e_{q} &= \frac{M_{Z'}}{24 \pi \Gamma_{Z'}} (q_{R}^{2} - q_{L}^{2}) (e_{R}^{2} - e_{L}^{2}) \\ &\frac{d^{2} \sigma}{dY \, dcos \, \theta} = \sum_{q=u,d} \left[a_{1}^{q} c_{q} + a_{2}^{q} e_{q} \right] \end{split}$$

Four measurements

- Four model parameters: c_u, c_d, e_u, e_d
- c_q defined and bounded in Tevatron study
 Carena, Daleo, Dobrescu, Tait
- e_q parity antisymmetric: need F/B asymmetry!
- Four measurements for four parameters Define: 1 12 0

$$F(Y) = \int_{0}^{1} d\cos\theta \frac{d^{2}\sigma}{dY d\cos\theta} \quad B(Y) = \int_{-1}^{0} d\cos\theta \frac{d^{2}\sigma}{dY d\cos\theta}$$

$$F_{>} = \left[\int_{Y_{1}}^{Y_{max}} + \int_{-Y_{max}}^{-Y_{1}} \right] F(Y) dY \qquad B_{>} = \left[\int_{Y_{1}}^{Y_{max}} + \int_{-Y_{max}}^{-Y_{1}} \right] B(Y) dY$$

$$F_{<} = \int_{-Y_{1}}^{Y_{1}} F(Y) dY \qquad B_{<} = \int_{-Y_{1}}^{Y_{1}} B(Y) dY$$

Extracting the couplings

 Four measurements related to four parameters linearly:

$$\begin{vmatrix}
F_{<} \\
B_{<} \\
F_{>} \\
B_{>}
\end{vmatrix} = \begin{vmatrix}
\int_{F_{<}} a_{1}^{u} & \int_{F_{<}} a_{1}^{d} & \int_{F_{<}} a_{2}^{u} & \int_{F_{<}} a_{2}^{d} \\
\int_{B_{<}} a_{1}^{u} & \int_{B_{<}} a_{1}^{d} & \int_{B_{<}} a_{2}^{u} & \int_{B_{<}} a_{2}^{d} \\
\int_{F_{>}} a_{1}^{u} & \int_{F_{>}} a_{1}^{d} & \int_{F_{>}} a_{2}^{u} & \int_{B_{>}} a_{2}^{d} \\
\int_{B_{>}} a_{1}^{u} & \int_{B_{>}} a_{1}^{d} & \int_{B_{>}} a_{2}^{u} & \int_{B_{>}} a_{2}^{d} \\
\vec{m} = M\vec{c} \\
\vec{c} = M^{-1}\vec{m}
\end{vmatrix} \begin{vmatrix}
C_{u} \\
C_{d} \\
e_{u} \\
e_{d}
\end{vmatrix}$$

Analysis

- Evaluate entries of matrix M at NLO in QCD (corrections important)
- Generate measurements for test models with full Drell-Yan (+ interference, SM)
- Code includes basic detector cuts ($|\eta|$ < 2.5, p_T > 20 GeV)
- Include statistical and PDF errors; add in quadrature and diagonalize errors in couplings
- How well are couplings determined if we "find" a particular model?

Model test cases

- Three from $E_6^- > SO(10) \times U(1)_{\psi}^- > SU(5) \times U(1)_{\psi} \times U(1)_{\chi} \times U$
- For illustration, overall coupling taken to retain GUT relations to EM coupling
- Also, a left-right symmetric model with gauge group $SU(2)_R$, $g_R = g_L$
- Width chosen to be decay to SM particles; only matters through statistics

c_u/c_d Results, 1.5 TeV, 100 fb⁻¹

Dot: PDF error

Dash: Statistical error

Solid: Total error

Dot-dash: E₆ family

- •Errors perpendicular!
- •c_u + c_d PDF-limited
- •c_u c_d statistics limited
- Test models discriminated

e le Results, 1.5 TeV, 100 fb⁻¹

•Statistics more difficult with e's, but still get something

Dot: PDF error

Dash: Statistical error

Solid: Total error

Dot-dash: E family

Results, 1.5 TeV, 1ab⁻¹

- c's PDF-limited only
- •e's start to discriminate by themselves

Dot: PDF error

Dash: Statistical error

Solid: Total error

Dot-dash: E family

Can we do better?

Look at cross section again:

$$\frac{d^{2}\sigma}{dY\,dcos\,\theta} = \sum_{q=u,d} \left[a_{1}^{q}'(q_{R}^{2} + q_{L}^{2})(e_{R}^{2} + e_{L}^{2}) + a_{2}^{q}'(q_{R}^{2} - q_{L}^{2})(e_{R}^{2} - e_{L}^{2}) + b_{1}q_{L}e_{L} + b_{2}q_{L}e_{R} + b_{3}^{q}q_{R}e_{L} + b_{4}^{q}q_{R}e_{R} \right] + c$$

 There's sign information! We should probe a region where this has an effect

Second stab: Off-peak

- Bin in dilepton mass, M_{\parallel} ; linear terms important in region between Z and Z' poles, keep on-peak bin
- No easy inversion of cross section; do a bruteforce scan of parameter space
- Must fit width to compare on- and off-peak measurements!
- With simple linear relation lost, might as well use more than two Y bins (preliminary result: negligible improvement)

New parameters

- Still have q X e degeneracy
- This leaves q_Le_L, q_Le_R, u_Re_L, d_Re_L
- Other two combinations are dependent on these four:

$$\frac{q_L e_L}{q_L e_R} = \frac{u_R e_L}{u_R e_R} = \frac{d_R e_L}{d_R e_R}$$

Must fit width, Γ

Procedure (1.5 TeV)

- Define a set of measurements to distinguish different terms in cross section
- Bin in invariant mass (different weights in linear/ quadratic terms): 800-1000 GeV, 1000-1200 GeV, 1200-1400 GeV, 1400-1600 GeV
- Bin in Y (different u/d weights): every 0.4 up to 1.2, 1.2+
- Split F/B (different parity weights): as defined previously

Procedure, continued

- Assume we find a particular test model corresponding to a set of measurements
- Determine statistical and PDF errors for the test model
- Scan 5D parameter space: for each test point, construct measurements
- Keep points where χ² comparison with model within
 5.9 (68% CL)
- This way we see what sections of parameter space are experimentally consistent with test model (illustrated in 2D projections of 5D confidence region)

Fitting the width

Width determined to a few GeV by comparison of on-and off-peak alone!

Probably better than experimental resolution of resonance shape

Tends to correlate with larger coupling

Fitting the couplings

- Sign degeneracy from on-peak mostly broken
- Needs both on + off peak to work!
 Degeneracies remain with off-peak only

Anything more?

- Do we need an ILC to get any further?
- What about the q X e degeneracy?
- Can we look in the quark channel?

Anything more?

- Do we need an ILC to get any further?
- What about the q X e degeneracy?
- Can we look in the quark channel?

Probably not...

ILC, anyone?

- ILC would be great for e X e
- t t-bar another
 possibility Barger, Han, Walker; ___
 Godfrey, Martin

Riemann

Moeller scattering

- New Jlab Moeller experiment measures asymmetry to very high precision, δA ~0.6 ppb
- Leads to error in $\sin^2\theta_{\rm W}^{\rm eff}$ of 0.00025 (0.00017 theory)
- Z' deviation from SM goes like (e_R²-e_L²)/M_{Z'}²—
 hyperbolic bound in e_I-e_R plane
- Large enough deviation leads to measurement
- We should know e_L/e_R from on-/off-peak analysis—angle in e_L-e_R plane $q_Le_L-e_L$

$$\frac{q_L e_L}{q_L e_R} = \frac{e_L}{e_R}$$

Moeller scattering, continued

- Intersection of hyperbolas and lines from other data give us e_L and e_R! Breaks degeneracy!
- At 1.5 TeV, test
 models consistent
 with Standard
 Model—we still limit
 size of e couplings

Moeller scattering, continued

- Increase coupling a little: chi model,
 e/cos θ_w → ½
- We can see a deviation in Moeller! Now we get all SM couplings

Summary: Z' analysis strategy

- Mostly model-independent procedure
- On-peak bin gives us square couplings with good precision, only PDF limited
- Combining with off-peak bins gives signs, width if poorly measured from resonance shape
- Moeller scattering could break last parameter degeneracy, give us all SM couplings
- Can select high scale theory with these parameters if known well enough