MSSM Higgs Bosons at the Tevatron

Patrick Draper University of Chicago

P. D., Tao Liu, and Carlos E.M. Wagner, arXiv:0905.xxxx

Introduction

- The Tevatron reach for the Standard Model Higgs is getting stronger.
- Current exclusion at 95% C.L for $160 \text{ GeV} < m_h < 170 \text{ GeV}$
- Current data set is $\approx 6 \text{ fb}^{-1}/\text{experiment}$
- May run for two more years, gaining $\approx 2 \text{ fb}^{-1}/\text{experiment/year}$
- May be able to improve signal efficiencies in some channels.

Goal

What efficiency and luminosity improvements are necessary to constrain large regions of the MSSM Higgs parameter space?

Constraints on m_h in the SM

 Tevatron searches produce constraints on the signal relative to the signal predicted by the SM:

$$\frac{\sigma \times \mathrm{Br}}{\sigma_{SM} \times \mathrm{Br}_{SM}} \leq R_{SM}^{95}$$

 Can compute naïve expected limits in each channel i at 95% C.L. (statistical errors + no signal):

$$R_{SM,i}^{95} = 2 \times \sqrt{b_i} / s_i$$

• \rightarrow Combined expected limit:

$$\frac{1}{(R_{SM}^{95})^2} = \sum_i \frac{1}{(R_{SM,i}^{95})^2}$$

Naïve Combined Limit vs CDF

May 18, 2009

Naïve Combined Limit vs D0

R⁹⁵

Naïve Combined Limit vs Limit from CDF + D0

• R_{SM}^{95} scales with luminosity as $L^{-1/2}$ and signal efficiency as e^{-1}

Translating Limits into the MSSM

• Rescale limits from individual channels

$$R^{95}_{MSSM,i} = R^{95}_{SM,i} \times \frac{\sigma_{SM,i} \times \operatorname{Br}_{SM,i}}{\sigma_{MSSM,i} \times \operatorname{Br}_{MSSM,i}}$$

- Allow each channel to go through any MSSM Higgs state: $gg \to h \to WW, \, gg \to H \to WW$
- Recombine. Limit is a function of MSSM parameters.
- Initially, keep separate combined limits from SM-like Higgs search channels and MSSM direct searches to see complementarity.

MSSM Higgs Sector

- Two Higgs Doublets H_1 and H_2 coupling to down-type and up-type fermions, respectively
- Neutral components get vevs $\sqrt{v_1^2 + v_2^2} = 174 \text{ GeV}$ $v_2/v_1 \equiv an eta$
- 1 CP-odd mass eigenstate A, mass m_A
- 2 CP-even states: $\begin{pmatrix} h \\ H \end{pmatrix} = \begin{pmatrix} -\sin\alpha & \cos\alpha \\ \cos\alpha & \sin\alpha \end{pmatrix} \begin{pmatrix} H_1^0 \\ H_2^0 \end{pmatrix}$ $\frac{m_A^2 + m_Z^2}{m_A^2 m_Z^2} \cdot (\cot\alpha \tan\alpha) = (\cot\beta \tan\beta)$

Properties of Lightest CP-even h

- Tree level: $m_h = \frac{1}{2} \left(m_A^2 + m_Z^2 \sqrt{(m_A^2 + m_Z^2)^2 4m_A^2 m_Z^2 \cos^2 2\beta} \right)$
- \rightarrow bounded: $m_h \leq m_Z$
- Large radiative corrections: $m_h \lesssim 130 \text{ GeV}$
- Couplings to fermions rescaled relative to the SM:

$$g_{hdd} = -(m_d/v)\frac{\sin\alpha}{\cos\beta}$$
 $g_{huu} = (m_u/v)\frac{\cos\alpha}{\sin\beta}$

- Couplings to gauge bosons rescaled by $\sin^2(\beta \alpha)$
- Typically up-type, but can be down-type for small m_A
- SM-like gauge and fermion couplings for large m_A

MSSM Benchmark Scenarios

- At tree level, m_A and $\tan\beta$ determine the Higgs spectrum and couplings to the SM.
- At loop level, more parameters enter $A_t, \mu, M_S...$
- Choose 4 sets of benchmark values representative of different effects of the radiative corrections
- Scan over $(m_A, \tan\beta)$ plane, compute combined R_{MSSM}^{95}
- Plot 95% C.L. exclusions for various increases in luminosity and signal efficiency

Scenario 1: Maximal Mixing

• Off-diagonal component $X_t \equiv A_t - \mu / \tan \beta$ of \tilde{t} mass matrix chosen so that m_h maximized

Constraints from SM-like Higgs Searches for Maximal Mixing

Constraints from Nonstandard Higgs Searches for Maximal Mixing

Combined Constraints for Maximal Mixing

Scenario 2: No Mixing

- No mixing in the stop sector minimizes m_h , $m_h \sim 110 115 \text{ GeV}$
- Soft mass scale raised to (partially) avoid LEP bounds
- Lighter Higgs \rightarrow constraints stronger vs. Maximal Mixing $M_S = 2 \text{ TeV}$

 $\mu = 1 \text{ TeV}$

 $X_t \approx 0$

Constraints from SM-like Higgs Searches for No-Mixing

Combined Constraints for No-Mixing

Scenario 3: Gluophobic

- Stop loop interferes destructively with top loop in gluon fusion production of SM-like Higgs
- Requires light top \rightarrow soft mass scale lowered, $A_t^{}$ kept moderately large
- Lighter h, associated production in the bb channel \rightarrow constraints similar to minimal mixing

 $M_S = 350 \text{ GeV}$ $\mu = 300 \text{ GeV}$ $A_t = -770 \text{ GeV}$

Constraints from SM-like Higgs Searches for the Gluophobic Scenario

Combined Constraints for Gluophobic

Scenario 4: Small
$$\alpha_{eff}$$

• Higgs mixing angle \rightarrow 0 in a region of the $(m_A, \tan \beta)$ plane because of cancellation between tree level and loop corrections to off-diagonal term in the mass matrix:

$$\mathcal{M}_{12} \simeq -(m_A^2 + m_Z^2) / \tan\beta + \frac{h_t^4 v^2}{16\pi^2} \bar{\mu} \bar{A}_t (\bar{A}_t^2 - 6)$$

$$\bar{A}_t \equiv A_t/M_S, \ \bar{\mu} \equiv \mu/M_S$$

• \rightarrow need moderate, opposite-signed A_t, μ

Scenario 4: Small α_{eff}

- Strongly suppresses $h \to b\bar{b}$ search channels, enhances $h \to WW$
- Demonstrates utility of WW in low-mass region

$$M_S = 1 \text{ TeV}$$

 $\mu = 1.5 \text{ TeV}$
 $A_t = -1.5 \text{ TeV}$

h→bb search for SM-like Higgs for small α_{eff}

(h→bb + h→WW) search for SM-like Higgs for small α_{eff}

Combined search for small α_{eff}

Conclusions

- Tevatron has the potential to exclude almost all of MSSM Higgs parameter space at 95% C.L.
- 10 fb⁻¹ and 1.25x improvement in efficiency is necessary in all benchmark scenarios
- Wide coverage requires 1.5x efficiency improvement in the maximal mixing and small- α_{eff} scenarios
- Complementarity between bb and WW channels in SM-like Higgs searches can extend coverage when h is fermiophobic, even in the low-mass region
- Complementarity between SM-like and nonstandard Higgs searches can yield 95% exclusions everywhere except in the maximal-mixing decoupling limit
- 3σ evidence is not likely in any scenario

Backup Slides

Constraints from nonstandard Higgs Searches for No-Mixing

Constraints from nonstandard Higgs Searches for Gluophobic

Constraints from nonstandard Higgs Searches for small α_{eff}

