Spontaneous R-parity Violation in Supersymmetry

Sogee Spinner

Phenomenology Institute, University of Wisconsin, Madison

May 22, 2009

Collider Physics 2009: Joint Argonne and IIT Theory Institute

Sogee Spinner (UW, Madison)

R-parity Violation

May 22, 2009 1 / 48

My collaborators:

- Vernon Barger
- Pavel Fileviez Pérez
- Gabe Shaughnessy

- Spectrum
- Pheno

4 A N

Outline

Introduction: SUSY and R-parity

B – L and R-parity

- Spectrum
- Pheno

Left-Right models and R-parity Spectrum

4 Conclusion

The Standard Model

Several reasons to consider beyond the standard model physics:

- Neutrino masses, experimentally verified.
- A Dark matter candidate.
- A resolution to the gauge hierarchy problem.

Ο ...

Neutrino Masses

Neutrino oscillation data indicates neutrinos are light, but massive.

Two possible mass terms for neutrinos:

Dirac : $m_D \nu_L \nu_R$ Majorana : $m \nu_L \nu_L$

But the SM:

- does not contain right-handed neutrinos (ν_R),
- Might allow: $\mathcal{L} \supset \frac{LH \ LH}{M} \sim \frac{v^2}{M} \nu_L \nu_L$; breaks the accidental $U(1)_{B-L}$

A theory that addresses neutrino masses should motivate ν_R or M.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction: SUSY and R-parity

Supersymmetry

SUSY can provide an elegant solution to the gauge hierarchy problem.

- Action invariant under Fermions ↔ Bosons.
- Doubles the particle content, ψ_f gets a partner ϕ_f :

$$\mathcal{L} \supset Y \bar{\psi}_f \psi_f H + \lambda^2 H^2 {\phi_f}^2$$

- Invariance $\Rightarrow Y = \lambda$.
- Stabilizes Higgs Mass:

Opposite signs cancel stabilizing the Higgs mass

The MSSM

The minimal supersymmetric standard model (MSSM):

 $W_{MSSM} = y_u Q H_u u^c + y_d Q H_d d^c + y_e L H_d e^c + \mu H_u H_d$

• Yukawa terms:
$$\psi_i \psi_j \frac{\partial W^2}{\partial \Phi_i \partial \Phi_i}$$
.

• Also have gauge strength Yukawa terms: $g_1 \tilde{e}^c e^c \tilde{B}$

$$\begin{array}{l} \underline{\text{Potential}} = |F_i|^2 + \frac{1}{2}D_a^2 + V_{\text{SUSY Breaking}} \\ \bullet & -F_{\phi_i}^* = \frac{\partial W}{\partial \phi_i}; \\ \bullet & D_a = -g_a \phi_i^* T^{ij} \phi_j \\ \bullet & V_{\text{SUSY Breaking}} \supset m_{H_u}^2 |H_u|^2 + m_{\tilde{Q}}^2 |\tilde{Q}|^2 + \dots \\ \frac{\langle H_u \rangle}{\langle H_d \rangle} \equiv \frac{v_u}{v_d} \equiv \tan \beta, \quad v_u^2 + v_d^2 = 246^2 \text{ GeV}^2. \end{array}$$

< □ > < □ > < □ > < □ >

B and L Violation

Unlike the SM, the MSSM does not have an accidental $U(1)_{B-L}$:

$$W_{\underline{l}} = \frac{1}{2} \lambda_{ij}^{k} L^{i} L^{j} e_{k}^{c} + \lambda_{ij}^{\prime k} L^{i} Q^{j} d_{k}^{c} + \mu_{i}^{\prime} L^{i} H_{u}$$
$$W_{\underline{\beta}} = \lambda^{\prime\prime ijk} u_{i}^{c} d_{j}^{c} d_{k}^{c}$$

- Including soft terms, there are 96 new parameters.
 - Allow for Majorana neutrino masses.
 - Introduces new, unobserved, processes.

Proton Decay

Proton decay places the most stringent bounds on these interactions:

 $au_{
m p} >$ 10 32 years so $|\lambda'\lambda''| <$ 10 $^{-26}$

A (10) A (10)

Proton Decay

Proton decay places the most stringent bounds on these interactions:

 $au_{
m p} >$ 10³² years so $|\lambda'\lambda''| <$ 10⁻²⁶

< 同 > < ∃ >

R-Parity

Introduce a multiplicative discrete symmetry: R-parity.

$$P_R = (-1)^{3(B-L)+2s}$$

• Examine general Yukawa coupling:

• $(-1)^{3(B-L)}$ separately conserved: B - L conservation.

Furthermore: $P_R(\text{particles}) = 1$ $P_R(\text{sparticles}) = -1$

• The LSP is stable and a dark matter candidate.

• Sparticles are produced in pairs at colliders. Cascade decay into the LSP, which escapes the detector as missing energy.

Pheno Studies

 $au_{p} \sim |\lambda' \lambda''| \rightarrow \text{studies of: } \lambda'' = 0$

• Trilinear RPV:
$$\lambda, \lambda' \lesssim 10^{-2}$$
.

• Bilinear RPV: $W = \mu'_i L_i H_u$; $\mu' \lesssim 10^{-3} \text{ GeV}$

But why R-parity?

• Many new parameters - not predictive.

• Is there a mechanism?

Remember the connection to matter Parity

$$P_M = (-1)^{3(B-L)}.$$

Hints at a connection to B - L symmetries.

Pheno Studies

 $au_{p} \sim |\lambda' \lambda''| \rightarrow \text{studies of: } \lambda'' = 0$

- Trilinear RPV: $\lambda, \lambda' \lesssim 10^{-2}$.
- Bilinear RPV: $W = \mu'_i L_i H_u$; $\mu' \lesssim 10^{-3} \text{ GeV}$

But why R-parity?

- Many new parameters not predictive.
- Is there a mechanism?

Remember the connection to matter Parity

$$P_M = (-1)^{3(B-L)}.$$

Hints at a connection to B – L symmetries.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pheno Studies

 $au_{p} \sim |\lambda' \lambda''| \rightarrow \text{studies of: } \lambda'' = 0$

• Trilinear RPV:
$$\lambda, \lambda' \lesssim 10^{-2}$$
.

• Bilinear RPV:
$${\it W}=\mu_i' L_i H_u;\,\mu'\lesssim$$
 10⁻³ GeV

But why R-parity?

- Many new parameters not predictive.
- Is there a mechanism?

Remember the connection to matter Parity

$$P_M = (-1)^{3(B-L)}.$$

Hints at a connection to B - L symmetries.

Global *B* – *L*

Early models: MSSM with a global $U(1)_{B-L}$ (Aulakh and Mohapatra 1982). Broken by $\langle \tilde{\nu} \rangle \neq 0$.

- The Majoron (J) is the Goldstone associated with breaking B L.
 - The CP-even partner is σ , $m_{\sigma} \lesssim 300 \text{KeV}$

Ruled out by invisible *Z* decay from LEP II $Z \rightarrow J + \sigma$.

• Introduce N, S and 3 ν^c with L = (0, 1, -1) (Masiero and Valle 1990)

$$\Delta W = y_{\nu} L H_{u} \nu^{c} + y N \nu^{c} S$$

Now the Majoron is mostly singlet (ν^c and S) so very little Z coupling.

くロン 不通 とくほ とくほ とうほう

Beyond global B - L

Several issues:

• Singlets and ν^c are not motivated

Introduction: SUSY and R-parity

- Replaced a discrete symmetry with a continuous one.
- Have to deal with the Majoron.

Gauging B-L addresses all these issues:

- Right-handed neutrinos are necessary for anomaly cancellation.
- A local symmetry is more aesthetic.
- The Majoron is eaten and is no longer physical.

Beyond global B - L

Several issues:

- Singlets and ν^c are not motivated
- Replaced a discrete symmetry with a continuous one.
- Have to deal with the Majoron.

Gauging B-L addresses all these issues:

- Right-handed neutrinos are necessary for anomaly cancellation.
- A local symmetry is more aesthetic.
- The Majoron is eaten and is no longer physical.

Outline

Introduction: SUSY and R-parity

2 B - L and R-parity

- Spectrum
- Pheno

Left-Right models and R-parity Spectrum

4 Conclusion

R-parity Through Local B - L

V. Barger P. Fileviez Pérez and SS: Phys.Rev.Lett.102:181802,2009

Simple MSSM extension: $SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

 $W = W_{MSSM} + Y_{\nu} L^{T} i\sigma_{2} H_{u} \nu^{c}$

$$\left\langle \tilde{L} \right\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} V_L \\ 0 \end{pmatrix} \qquad \qquad \left\langle \tilde{\nu}^c \right\rangle = \frac{1}{\sqrt{2}} V_R$$

$$\langle V_F \rangle = \frac{1}{4} Y_{\nu}^2 \left(v_R^2 v_u^2 + v_R^2 v_L^2 + v_L^2 v_u^2 \right) + \frac{1}{2} \mu^2 \left(v_u^2 + v_d^2 \right) + \frac{1}{\sqrt{2}} Y_{\nu} \mu v_L v_d v_R$$

$$\langle V_D \rangle = \frac{1}{32} \left[g_2^2 \left(v_u^2 - v_d^2 - v_L^2 \right)^2 + g_1^2 \left(v_u^2 - v_d^2 - v_L^2 \right)^2 + g_{BL}^2 \left(v_R^2 - v_L^2 \right)^2 \right]$$

$$\langle V_S \rangle = \frac{1}{2} m_L^2 v_L^2 + \frac{1}{2} m_{\nu}^2 v_R^2 + \frac{1}{2} m_{H_u}^2 v_u^2 + \frac{1}{2} m_{H_d}^2 v_d^2 - 2b v_u v_d - \frac{1}{\sqrt{2}} a_L v_u v_L v_R$$

R-parity Through Local B - L

V. Barger P. Fileviez Pérez and SS: Phys.Rev.Lett.102:181802,2009

Simple MSSM extension: $SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$W = W_{MSSM} + Y_{\nu} L^{T} i\sigma_{2} H_{u} \nu^{c}$$

$$\left\langle \tilde{L} \right\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} V_L \\ 0 \end{pmatrix} \qquad \qquad \left\langle \tilde{\nu}^c \right\rangle = \frac{1}{\sqrt{2}} V_R$$

 $\langle V_F \rangle = \frac{1}{4} Y_{\nu}^2 \left(v_R^2 v_u^2 + v_R^2 v_L^2 + v_L^2 v_u^2 \right) + \frac{1}{2} \mu^2 \left(v_u^2 + v_d^2 \right) + \frac{1}{\sqrt{2}} Y_{\nu} \mu v_L v_d v_R$ $\langle V_D \rangle = \frac{1}{32} \left[g_2^2 \left(v_u^2 - v_d^2 - v_L^2 \right)^2 + g_1^2 \left(v_u^2 - v_d^2 - v_L^2 \right)^2 + g_{BL}^2 \left(v_R^2 - v_L^2 \right)^2 \right]$ $\langle V_S \rangle = \frac{1}{2} m_{\tilde{L}}^2 v_L^2 + \frac{1}{2} m_{\tilde{\nu}^c}^2 v_R^2 + \frac{1}{2} m_{H_u}^2 v_u^2 + \frac{1}{2} m_{H_d}^2 v_d^2 - 2b v_u v_d - \frac{1}{\sqrt{2}} a_L v_u v_L v_R$

R-parity Through Local B - L

V. Barger P. Fileviez Pérez and SS: Phys.Rev.Lett.102:181802,2009

Simple MSSM extension: $SU(2)_L \times U(1)_Y \times U(1)_{B-L}$:

$$W = W_{MSSM} + Y_{\nu} L^{T} i\sigma_{2} H_{u} \nu^{c}$$

$$\left\langle \tilde{L} \right\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} v_L \\ 0 \end{pmatrix} \qquad \qquad \left\langle \tilde{\nu}^c \right\rangle = \frac{1}{\sqrt{2}} v_R$$

$$\langle V_F \rangle = \frac{1}{4} Y_{\nu}^2 \left(v_R^2 v_u^2 + v_R^2 v_L^2 + v_L^2 v_u^2 \right) + \frac{1}{2} \mu^2 \left(v_u^2 + v_d^2 \right) + \frac{1}{\sqrt{2}} Y_{\nu} \ \mu v_L v_d v_R$$

$$\langle V_D \rangle = \frac{1}{32} \left[g_2^2 \left(v_u^2 - v_d^2 - v_L^2 \right)^2 + g_1^2 \left(v_u^2 - v_d^2 - v_L^2 \right)^2 + g_{BL}^2 \left(v_R^2 - v_L^2 \right)^2 \right]$$

$$\langle V_S \rangle = \frac{1}{2} m_L^2 v_L^2 + \frac{1}{2} m_{\nu}^2 v_R^2 + \frac{1}{2} m_{H_u}^2 v_u^2 + \frac{1}{2} m_{H_d}^2 v_d^2 - 2b \ v_u v_d - \frac{1}{\sqrt{2}} a_L \ v_u v_L v_R$$

3

Minimizing

For $v_R \gg v_u, v_d \gg v_L$

$$v_R=\sqrt{rac{-8m_{\widetilde{
u}^c}^2}{g_{BL}^2}}$$

$$v_L = \frac{\left(y_\nu \mu v_d - a_\nu v_u\right) v_R}{\sqrt{2} \left(m_{\tilde{L}}^2 - \frac{1}{8}g_{BL}^2 v_R^2\right)}$$

 v_u and v_d as in the MSSM

イロト イポト イヨト イヨ

æ

э

Sogee Spinner (UW, Madison)

R-parity Violation

May 22, 2009 20 / 48

4 A N

-

Sogee Spinner (UW, Madison)

-

Proton decay?!?

Not Necessarily

2

No proton decay: Baryon num. conserved, $\lambda'' = 0$.

RPV

No proton decay: Baryon num. conserved, $\lambda'' = 0$.

Lepton num. is safe: λ , λ' suppressed by ν masses.

RPV

No proton decay: Baryon num. conserved, $\lambda'' = 0$.

Lepton num. is safe: λ, λ' suppressed by ν masses.

Dark matter candidate: Long-lived gravitino LSP.

RPV

No proton decay: Baryon num. conserved, $\lambda'' = 0$.

Lepton num. is safe: λ, λ' suppressed by ν masses.

Dark matter candidate: Long-lived gravitino LSP.

Less free parameters: spontaneous not explicit.

RPV

Plus

- **Minimal**: particle content = MSSM + anomaly cancellation.
- **Predictive**: no singlets, no vector-like pairs; $M_{B-L} = m_{SUSY}$.
- Neutrino Masses: at tree level.
- **Testable**: Relationship between Z' and R-parity violation.

Plus

- Minimal: particle content = MSSM + anomaly cancellation.
- **Predictive**: no singlets, no vector-like pairs; $M_{B-L} = m_{SUSY}$.
- Neutrino Masses: at tree level.
- **Testable**: Relationship between Z' and R-parity violation.

Plus

- Minimal: particle content = MSSM + anomaly cancellation.
- **Predictive**: no singlets, no vector-like pairs; $M_{B-L} = m_{SUSY}$.
- Neutrino Masses: at tree level.
- **Testable**: Relationship between Z' and R-parity violation.

Plus

- **Minimal**: particle content = MSSM + anomaly cancellation.
- **Predictive**: no singlets, no vector-like pairs; $M_{B-L} = m_{SUSY}$.
- Neutrino Masses: at tree level.
- **Testable**: Relationship between Z' and R-parity violation.

Plus

- Minimal: particle content = MSSM + anomaly cancellation.
- **Predictive**: no singlets, no vector-like pairs; $M_{B-L} = m_{SUSY}$.
- Neutrino Masses: at tree level.
- **Testable**: Relationship between Z' and R-parity violation.

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$oldsymbol{X},oldsymbol{ar{X}}, u^{oldsymbol{c}}$	ν^{c}
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	X, \bar{X}, S, u^c	ν^{c}
Breaking B-L:	$S(X\bar{X} - M^2); M_{B-L} = ?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$oldsymbol{X},oldsymbol{ar{X}}, u^{oldsymbol{c}}$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	X, \bar{X}, S, u^c	$ u^{c}$
Breaking B-L:	$S(X\bar{X}-M^2); M_{B-L}=?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$oldsymbol{X},oldsymbol{ar{X}}, u^{oldsymbol{c}}$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	X, \bar{X}, S, u^c	$ u^{c}$
Breaking B-L:	$S\left(X\bar{X}-M^2 ight);M_{B-L}=?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$oldsymbol{X},oldsymbol{ar{X}}, u^{oldsymbol{c}}$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	X, \bar{X}, S, u^c	$ u^{c}$
Breaking B-L:	$S\left(X\bar{X}-M^2 ight);M_{B-L}=?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$oldsymbol{X},oldsymbol{ar{X}}, u^{oldsymbol{c}}$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	X, \bar{X}, S, u^c	$ u^{c}$
Breaking B-L:	$S(X\bar{X}-M^2); M_{B-L}=?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$X, ar{X}, u^c$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	X, \bar{X}, S, u^c	$ u^{c}$
Breaking B-L:	$S(X\bar{X}-M^2); M_{B-L}=?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$X, ar{X}, u^c$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	X, \bar{X}, S, u^c	$ u^{c}$
Breaking B-L:	$S(X\bar{X} - M^2); M_{B-L} = ?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$X, ar{X}, u^c$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	$oldsymbol{X},oldsymbol{ar{X}},oldsymbol{S}, u^{c}$	$ u^{c}$
Breaking B-L:	$S\left(X\bar{X}-M^2 ight);M_{B-L}=?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$oldsymbol{X},oldsymbol{ar{X}}, u^{oldsymbol{c}}$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	$X, ar{X}, \mathcal{S}, u^c$	$ u^{c}$
Breaking B-L:	$S\left(X\bar{X}-M^2 ight);M_{B-L}=?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$X, ar{X}, u^c$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	$oldsymbol{X},oldsymbol{ar{X}},oldsymbol{\mathcal{S}}, u^{oldsymbol{c}}$	$ u^{c}$
Breaking B-L:	$S(X\bar{X}-M^2); M_{B-L}=?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$oldsymbol{X},oldsymbol{ar{X}}, u^{oldsymbol{c}}$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	$X, ar{X}, \mathcal{S}, u^c$	$ u^{c}$
Breaking B-L:	$S(X\bar{X}-M^2); M_{B-L}=?$	$M_{B-L} = m_{susy}$

Compare to R-parity conserving models

	R-parity conservation	R-parity violation
Fields:	$oldsymbol{X},oldsymbol{ar{X}}, u^{oldsymbol{c}}$	$ u^{c}$
Breaking B-L:	$ \mu_X ^2 + m_X^2 < 0$ new μ problem	$m_{ u^c}^2 < 0$
	or	
Fields:	$oldsymbol{X},oldsymbol{ar{X}},oldsymbol{S}, u^{oldsymbol{c}}$	$ u^{c}$
Breaking B-L:	$\mathcal{S}\left(Xar{X}-M^2 ight);M_{B-L}=?$	$M_{B-L}=m_{susy}$

æ

Boson Masses

Gauge boson mass

$$M_{Z'}^2 = rac{1}{4}g_{BL}^2 v_R^2; \hspace{0.5cm} rac{M_{Z'}}{g_{BL}} > 5 ext{ TeV}; \hspace{0.5cm} v_R \gtrsim 10 ext{ TeV}$$

Higgs masses as in MSSM (no B - L charge). Using $v_L, y_\nu, a_\nu \rightarrow 0$:

- Neutral sleptons

 Im ν̃^c: The B L goldstone boson
 Re ν^c: m²_{H_ν} = ¼g_{BL}v²_R = M²_{Z'}
 m²_{ν̃} = m²_L ⅓g²_{BL}v²_R ⅓(g²₁ + g²₂) (v²_u v²_d)
- Charged sleptons

•
$$m_{\tilde{e}_L}^2 = m_{\tilde{L}}^2 - \frac{1}{8}g_{BL}^2 v_R^2 + \frac{1}{8}(g_2^2 - g_1^2)(v_u^2 - v_d^2)$$

• $m_{\tilde{e}_R}^2 = m_{\tilde{e}^c}^2 + \frac{1}{8}g_{BL}^2 v_R^2 + \frac{1}{4}g_1^2(v_u^2 - v_d^2)$

Neutrino Masses

Basis: $(\nu, \nu^c, \tilde{B}', \tilde{B}, \tilde{W}_L, \tilde{H}^0_d, \tilde{H}^0_u)$

$$\begin{pmatrix} 0 & -\frac{1}{\sqrt{2}}y_{\nu}v_{u} & -\frac{1}{2}g_{BL}v_{L} & -\frac{1}{2}g_{1}v_{L} & \frac{1}{2}g_{2}v_{L} & 0 & \frac{1}{\sqrt{2}}y_{\nu}v_{R} \\ -\frac{1}{\sqrt{2}}y_{\nu}v_{u} & 0 & \frac{1}{2}g_{BL}v_{R} & 0 & 0 & 0 & \frac{1}{\sqrt{2}}y_{\nu}v_{L} \\ -\frac{1}{2}g_{BL}v_{L} & \frac{1}{2}g_{BL}v_{R} & M_{BL} & 0 & 0 & 0 & 0 \\ -\frac{1}{2}g_{1}v_{L} & 0 & 0 & M_{1} & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{1}v_{u} \\ \frac{1}{2}g_{2}v_{L} & 0 & 0 & 0 & M_{2} & \frac{1}{2}g_{2}v_{d} & -\frac{1}{2}g_{2}v_{u} \\ 0 & 0 & 0 & -\frac{1}{2}g_{1}v_{d} & \frac{1}{2}g_{2}v_{d} & 0 & -\mu \\ \frac{1}{\sqrt{2}}y_{\nu}v_{R} & \frac{1}{\sqrt{2}}y_{\nu}v_{L} & 0 & \frac{1}{2}g_{1}v_{u} & -\frac{1}{2}g_{2}v_{u} & -\mu & 0 \end{pmatrix}$$

Complicated; two helpful limits:

•
$$y_{\nu} \rightarrow 0 \ m_{\nu} \sim \frac{\mu v_L^2}{2 v_d v_u} < 10^{-9} \text{ GeV}$$
; therefore $v_L < 10^{-3} \text{ GeV}$
• $v_L \rightarrow 0 \ m_{\nu} \sim \frac{g^2 v_d^2 \ y_{\nu}^2 v_R^2}{\mu^2 M_{\chi}} < 10^{-9} \text{ GeV}$; therefore $y_{\nu} < 10^{-5}$

Z' decays

Testing the connection between Z' and R-parity violation.

• New production mechanism for sparticles, especially sleptons:

LSP $\tilde{\nu}$ has lepton flavor violating decays

$$\tilde{\nu}_i
ightarrow e_i e_j$$

$$-rac{ ilde{
u}_{i}}{(y_{e})_{i}} rac{ ilde{
u}_{d}}{\mu} rac{ ilde{
u}_{d}}{(y_{
u})_{jk}(v_{R})_{k}} \sim$$

$$\frac{(y_e)_i(y_
u)_{jk}(v_R)_k}{\mu} \sim \lambda_{ij}$$

 $Z'
ightarrow e \mu e \mu, \mu \tau \mu \tau$ possible

Studied by Lee PLB 2008 but no specific R-parity model

Z' decays

Testing the connection between Z' and R-parity violation.

• New production mechanism for sparticles, especially sleptons:

LSP $\tilde{\nu}$ has lepton flavor violating decays

$$\tilde{\nu}_i \rightarrow e_i e_j$$

$$-\underbrace{\tilde{\nu}_{i}}_{(\mathbf{y}_{e})_{i}}\underbrace{\tilde{H}_{d}}_{\mathbf{\mu}}\underbrace{\tilde{H}_{u}}_{(\mathbf{y}_{\nu})_{jk}(\mathbf{v}_{R})_{k}} = \underbrace{\tilde{\nu}_{i}}_{(\mathbf{y}_{\nu})_{jk}(\mathbf{v}_{R})_{k}} \sim \lambda_{jj}$$

 $Z'
ightarrow e \mu e \mu, \mu au \mu au$ possible

Studied by Lee PLB 2008 but no specific R-parity model.

Sogee Spinner (UW, Madison)

LSP decay:

- $\tilde{\chi}_1^0 \rightarrow \nu_L Z, I^+ W^-$
- Due to lepton neutralino/chargino mixings

SUSY discovery no longer dependent on missing energy signals.

For a gravitino LSP, these decays are possible for the NLSP.

Dark Matter

- A gravitino LSP decays to SM particles without R-Parity.
- For a light enough gravitino, $\tilde{G} \rightarrow \gamma \nu$
- Suppressed by both M_P and R-parity ($\sim m_{
 u}$); Takayama and Yamaguchi 2000

Outline

Introduction: SUSY and R-parity

B – L and R-parity

- Spectrum
- Pheno

Left-Right models and R-parity Spectrum

4 Conclusion

Why Left-Right?

There are many motivations for studying $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$:

- The vacuum prefers $v_R \gg v_{ew}$: suppresses *V*+*A* interactions.
- Hints at *unification* since its gauge group is a subgroup of SO(10).
- Can implement *leptogenesis*.
- Electric charge is on a more physical footing:

$$Q = I_{3L} + I_{3R} + \frac{1}{2}(B - L)$$

• And of course, neutrino masses.

Traditional SUSY left-right models contain B - L even triplet fields.

- Automatic R-parity conservation.
- Can also implement type I seesaw mechanism.

But automatic R-parity conservation is hard; requires one of the following:

- An extra singlet.
- Non-renormalizable terms.
- Or more complicated breaking structure.

We can avoid all of this by applying the same mechanism as before.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Traditional SUSY left-right models contain B - L even triplet fields.

- Automatic R-parity conservation.
- Can also implement type I seesaw mechanism.

But automatic R-parity conservation is hard; requires one of the following:

- An extra singlet.
- Non-renormalizable terms.
- Or more complicated breaking structure.

We can avoid all of this by applying the same mechanism as before.

Left-Right models and R-parity

SLRM Particle Content

Field content:

Fields	$SU(2)_L imes SU(2)_R imes U(1)_{B-L}$
Q	$(2, 1, +\frac{1}{3})$
Q^c	$(1, 2, -\frac{1}{3})$
L	(2, 1, -1)
L ^c	(1,2,+1)
Φ	(2,2,0)
Δ^{c}	(1,3,-2)
$\bar{\Delta}^{c}$	(1,3,+2)
Δ	(3,1,2)
Ā	(3,1,-2)

イロト イポト イヨト イヨ

New field content:

< 47 ▶

.

The Simplest SLRM

P. Fileviez Pérez and SS: PLB '09

$$W = Y_Q Q^T i\sigma_2 \Phi i\sigma_2 Q^C + Y_L L^T i\sigma_2 \Phi i\sigma_2 L^C + \mu \operatorname{Tr} \left(\Phi^T i\sigma_2 \Phi i\sigma_2 \right)$$

wtih

$$Q = \begin{pmatrix} u \\ d \end{pmatrix}$$
 $Q^c = \begin{pmatrix} u^c \\ d^c \end{pmatrix}$ $L = \begin{pmatrix} \nu \\ e \end{pmatrix}$ $L^c = \begin{pmatrix} \nu^c \\ e^c \end{pmatrix}$

And under parity:

 $Q \leftrightarrow Q^{\mathcal{C}*}$ $L \leftrightarrow L^{\mathcal{C}*}$ $\Phi \leftrightarrow \Phi^{\dagger}$

So that $g_L = g_R$, Y_Q and Y_L are hermitian and μ is real.

A (1) > A (2) > A

Boson Masses

Gauge bosons:

• $M_{W'}^2 \sim \frac{1}{4} g_R^2 v_R^2 \gtrsim$ 700 (1600) GeV: direct (indirect).

• $M_{Z'}^2 \sim rac{1}{4} \left(g_R^2 + g_{BL}^2
ight) v_R^2 \gtrsim$ 1000 (2000) GeV

Scalar masses:

- Left-handed sleptons masses as before.
- Right-handed sleptons eaten; neutral CP-even, *m* ~ *M*_{W'}

•
$$m_{H^+}^2 - m_{A^0}^2 \sim 2 M_W^2$$
 instead of M_W^2

• MSSM heavy Higgses (*H*⁰, *A*⁰, *H*⁺) masses at right-handed scale.

Outline

Introduction: SUSY and R-parity

B – L and R-parity

- Spectrum
- Pheno

Left-Right models and R-parity Spectrum

Conclusion

・ロト ・ 四ト ・ ヨト ・ ヨト

Conclusion

Conclusion

Sogee Spinner (UW, Madison)

R-parity Violation

May 22, 2009 45 / 48

æ

Conclusion

Conclusion

Conclusion

・ロト ・四ト ・ヨト ・ヨト