Gauge Mediation

Signatures w/o SUSY

anomalous extra dimensional symmetries

Jay Hubisz
Syracuse University 5/19/2009
w/ Csaba Csaki, Johannes Heinonen and Yuri Shirman
arXiv:0901.2933 [hep-ph]

LHC^{-1} problem

Go from data space to theory space smoking guns: MET + jets = SUSY (MSSM)

NO!
UED, little Higgs w/ T-parity
high PT photons, Z's, possible displaced vertex
A surefire SUSY smoking gun (gauge mediation)

Gauge Mediation

Pheno: Gravitino mass:

$$
m_{3 / 2}=\frac{F}{k \sqrt{3} M_{P}}=\frac{1}{k}\left(\frac{\sqrt{F}}{100 \mathrm{TeV}}\right)^{2} 2.4 \mathrm{eV}
$$

Interactions are due to Goldstino (eaten by massive gravitino)

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{F_{0}} J_{Q}^{\mu} \partial_{\mu} \tilde{G} \quad \mathcal{L}=-\frac{k}{F}\left(\bar{\psi}_{L} \gamma^{\mu} \gamma^{\nu} \partial_{\nu} \phi-\frac{i}{4 \sqrt{2}} \bar{\lambda}^{a} \gamma^{\mu} \sigma^{\nu \rho} F_{\nu \rho}^{a}\right) \partial_{\mu} \tilde{G}+\text { h.c. } \\
\chi_{1}^{0} \rightarrow \gamma(Z)+\tilde{G}
\end{gathered}
$$

(Giudice, Rattazzi 1998)

NLSP decays

Decay length in colliders:

$$
L=\frac{1}{\kappa_{\gamma}}\left(\frac{100 \mathrm{GeV}}{m}\right)^{5}\left(\frac{\sqrt{F / k}}{100 \mathrm{TeV}}\right)^{4} \sqrt{\frac{E^{2}}{m^{2}}-1} \times 10^{-2} \mathrm{~cm}
$$

m is NLSP mass, F / k is SUSY breaking scale

$$
\sqrt{\frac{F}{k}} \sim 10^{6} \mathrm{GeV}
$$

prompt, long lived, or displaced vertex

Can we get the same signals from a very different model?
variation on Universal Extra Dimensions or Little Higgs?

UED

- All SM fields propagate in the bulk
- 5D - flat extra dimension (size $\mathrm{L} O(1 / \mathrm{TeV})$)
- SM fermions get zero modes through orbifold compactification (boundary cond.)
- SM zero modes have ++ BC
- KK-parity is imposed (remnant of 5D mom. cons)
- EWP, Dark matter (Missing ET)

The first "bosonic" SUSY
(Cheng, Matchev, Schmaltz 2002)

KK-parity

- branes break 5D trans. invariance
- discrete momentum cons. (KK-number)
- Loops further break it to KK-parity
- reflection about midpoint of extra dim.
- Certain terms forbidden (5D fermion masses)

The Model

$S U(3)_{c} x S U(2)\left\llcorner x U(1)_{y}\right.$

$S U(3)_{c} \times S U(2)\left\llcorner x U(1)_{y}\right.$

$$
z=0
$$

$S U(3)_{c} x S U(2)\left\llcorner x U(1)_{y}\right.$

 $x U(1)_{P Q}$2 Higgs Doublets
H_{u}, H_{d}
$z=L$

	H_{u}	H_{d}	Q	\bar{u}	\bar{d}	L	\bar{e}
Y	$1 / 2$	$-1 / 2$	$1 / 6$	$-2 / 3$	$1 / 3$	$-1 / 2$	1
PQ	1	1	$-1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$

Anomalous
$\mu H_{u}^{T} i \tau_{2} H_{d}$

A broken 5D gauge symmetry

Gauge a $U(1)$ in the bulk of the flat extra dimension (bulk gauge coupling gpQ)

Break it by boundary conditions:

$$
\left.B_{\mu}\right|_{z=0, L}=0
$$

Symmetry is global on boundaries:

$$
B_{M} \rightarrow B_{M}+\left.\partial_{M} \beta(x, z) \quad \partial_{\mu} \beta(x, z)\right|_{z=0, L}=0
$$

Gauge fixing in the bulk

$$
\int d z \frac{-1}{4 g_{\mathrm{PQ}}^{2}}\left[B_{\mu \nu} B^{\mu \nu}-2\left(\partial_{5} B_{\mu}\right)^{2}-2\left(\partial_{\mu} B_{5}\right)^{2}+4\left(\partial_{\mu} B^{\mu}\right)\left(\partial_{5} B_{5}\right)\right]
$$

Bulk gauge fixing:

$$
\mathcal{L}_{\mathrm{GF}}=-\int d z \frac{1}{2} G^{2} \equiv \int d z \frac{-1}{2 g_{\mathrm{PQ}}^{2} \xi_{B}}\left[\partial_{\mu} B^{\mu}-\xi_{B} \partial_{5} B_{5}\right]^{2}
$$

Residual gauge symmetry:
$\partial_{\mu} \partial^{\mu} \beta(x, y)-\xi_{B} \partial_{5}^{2} \beta(x, y)=0$
5D unitary gauge: $\quad \xi_{B} \rightarrow \infty$

$$
\beta_{\mathrm{res}}(x, z)=\beta^{+}+\beta^{-}\left(\frac{2 z-L}{2 L}\right)
$$

A 5D Goldstone Boson

with BC's we chose, a zero mode remains uneaten
under residual gauge transform:

$$
\beta_{\mathrm{res}}(x, z)=\beta^{+}+\beta^{-}\left(\frac{2 z-L}{2 L}\right) \quad B_{5} \rightarrow B_{5}+\frac{\beta^{-}}{L}
$$

massless with shift symmetry $=$ Goldstone

Additional Spontaneous Breaking

$U(1)$ is broken by boundary conditions, and there's also a Higgs field(s) with charge under this gauge group

$$
\begin{gathered}
\mathcal{L}=-V_{\text {bound }}(H(0))-V_{\text {bound }}(H(L))+\int d z \frac{-1}{4 g_{5 D}^{2}} B_{M N} B^{M N}+\frac{1}{L}\left|D_{M} H\right|^{2}-V(H) \\
H \sim \frac{v(z)}{\sqrt{2}} e^{i \pi(x, z) / v(z)} \quad \mathcal{L}_{\text {mix }}=-\frac{1}{g_{5 D}^{2}}\left(\partial_{5} B^{\mu}\right)\left(\partial_{\mu} B_{5}\right)+\frac{1}{L} v \partial_{\mu} \pi B^{\mu} \\
\text { NeW Gauge fixing potential } \\
\frac{1}{2} G^{2}=\frac{-1}{2 \xi g_{5 D}^{2}}\left[\partial_{\mu} B^{\mu}-\xi\left(\partial_{5} B_{5}+\frac{g_{5 D}^{2}}{L} v \pi\right)\right]^{2}
\end{gathered}
$$

Two Zero Modes

KK-parity odd

$\pi^{(0) \text { odd }}=A_{B}^{\prime} \frac{v}{\kappa} \sinh \kappa(z-L / 2) \zeta^{\text {odd }}(x)$
$B_{5}^{(0) \text { odd }}=A_{B}^{\prime} \cosh \kappa(z-L / 2) \zeta^{\text {odd }}(x)$

KK-parity even

$$
B_{5}^{(0) \mathrm{even}}=B_{B}^{\prime} \sinh \kappa(z-L / 2) \zeta^{\mathrm{even}}(x)
$$

$$
\pi^{(0) \mathrm{even}}=-B_{B}^{\prime} \frac{v}{\kappa} \cosh \kappa(z-L / 2) \zeta^{\mathrm{even}}(x)
$$

$$
\kappa \equiv g_{5 D} v / \sqrt{L}
$$

Small kappa:

KK-parity odd

$$
\begin{aligned}
& B_{5}^{(0) \text { odd }} \approx \frac{g_{5 D}}{\sqrt{L}} \zeta^{\text {odd }} \\
& \pi^{(0) \text { odd }} \approx \frac{g_{5 D}}{\sqrt{L}} v(z-L / 2) \zeta^{\text {odd }}
\end{aligned}
$$

KK-parity even

$$
B_{5}^{(0) \mathrm{even}} \approx-\frac{g_{5 D^{v}}^{2}}{L}(z-L / 2) \zeta^{\text {even }}
$$

$$
\pi^{(0) \text { even }} \approx \zeta^{\text {even }}
$$

The 5D Goldstone

Interactions arise from 5D kinetic term

$$
\bar{\Psi} i D_{M} \gamma^{M} \Psi \supset \bar{\Psi} i\left(\partial_{5}-i \frac{g_{5 D}}{\sqrt{L}} B_{5}^{(0)}\right) \gamma^{5} \Psi
$$

Field redefinition: (Wilson line)

The B_{5} couples derivatively:

$$
\bar{\Psi} i \not \partial \Psi \rightarrow \bar{\Psi}^{\prime} i \not \partial \Psi^{\prime}+\int_{z_{0}}^{z} d z^{\prime} B_{5}^{(0)} \partial_{\mu}\left(\bar{\Psi}^{\prime} \gamma^{\mu} \Psi^{\prime}\right)
$$

Anomalies in 4D

Under chiral redefinitions, the Jacobian in the PI measure is generically non-trivial

$$
\begin{gathered}
\Psi=e^{-i \frac{\pi}{2 v} \gamma^{5}} \Psi^{\prime} \quad \int \mathcal{D} \bar{\Psi} \mathcal{D} \Psi \rightarrow \int \mathcal{D} \bar{\Psi}^{\prime} \mathcal{D} \Psi^{\prime}[J] \\
{[J]=\exp \left[\frac{i}{v} \int d^{4} x \pi(x) \mathcal{A}\right]}
\end{gathered}
$$

Where \mathcal{A} is the axial vector current anomaly:

$$
\mathcal{A}=\frac{\alpha}{8 \pi} \mathcal{F} \cdot \tilde{\mathcal{F}}
$$

Anomalies in 5D

5D theory is vectorlike in bulk (no anomalies)
Chiral theory is arranged via orbifold projection
Theory is chiral only on the branes $(z=0, L)$
Anomalies restricted to the branes
(does not follow profile of zero mode)
(Arkani-Hamed, Cohen, Georgi)

Anomalies in 5D

The Complete Anomaly:

$$
\begin{gathered}
\mathcal{A}(x, z)=\frac{1}{2}[\delta(z)+\delta(z-L)] \sum_{f} q_{\mathrm{PQ}}^{f}\left(\frac{q_{r}^{f,}}{16 \pi^{2}} F \cdot \tilde{F}+\frac{\mathrm{Tr}_{t} \tau_{t}^{f} \tau_{d}^{f}}{16 \pi^{2}} W \cdot \tilde{W}+\frac{\operatorname{Tr} t_{t}^{f} t_{t}^{f}}{16 \pi^{2}} G \cdot \tilde{G}\right) \\
\equiv \frac{1}{2}[\delta(z)+\delta(z-L)] \mathcal{Q}_{\mathrm{PQ}}(x, z)
\end{gathered}
$$

Our chiral redefinition was:

$$
\Psi=\exp \left[i q\left(\frac{\pi\left(z_{0}\right)}{v\left(z_{0}\right)}+\int_{z_{0}}^{z} d z^{\prime} B_{5}^{(0)}\right)\right] \Psi^{\prime}
$$

PI measure shifts, new terms in eff. Lagrangian are:

$$
\mathcal{L}_{B_{5} A A}^{e f f}=\frac{g_{D}^{\prime 2} g_{5 D}^{\mathrm{PQ}}}{16 \pi^{2} \sqrt{L}} B_{\overline{5}}^{(0)}(x) \sum_{m \geq n \geq 0} c_{n m} F^{(n)} \cdot \tilde{F}^{(m)} \left\lvert\, c_{n m}= \begin{cases}0 & n+m \text { even } \\ \sum_{f} q_{\mathrm{P}}^{f} q_{y}^{f 2} & n+m \text { odd, } n, m \geq 1 \\ \frac{1}{\sqrt{2}} \sum_{f} q_{\mathrm{PQ}}^{f} q_{Y}^{f 2} & n+m \text { odd, } n \cdot m=0\end{cases}\right.
$$

Massless modes are bad

pi is a would-be "electroweak axion" if it is very
light (exact PQ symmetry)
(Weinberg-Wilczek)
interactions only suppressed by $v=246 \mathrm{GeV}$
completely ruled out by astro and nuclear physics
also need at least a small mass for B5

Explicit breaking

Symmetry is only global on boundaries

$$
\begin{gathered}
V_{\text {bound }}=-\left.\frac{\mu}{2}\left(H^{2}+H^{* 2}\right) \sim \mu \pi^{2}\right|_{0, L} \\
\text { (very similar for } 2 H D M \text {) } \\
V_{\text {eff }}=2 \mu \zeta_{+}^{2}+\frac{1}{2} g_{4 D}^{2} \mu v^{2} L^{2} \zeta_{-}^{2}
\end{gathered}
$$

Scalar "Axino" gets a potentially small mass:

$$
m_{\text {light }}=74 \mathrm{MeV}\left(\frac{g}{3 \cdot 10^{-4}}\right)\left(\frac{\mu}{300^{2} \mathrm{GeV}^{2}}\right)^{1 / 2}(L \cdot 1000 \mathrm{GeV})
$$

(has small - negligible - contribution to EWP)

The Model

$S U(3)_{c} \times S U(2)\left\llcorner x U(1)_{y}\right.$

$S U(3)_{c} \times S U(2)\left\llcorner x U(1)_{y}\right.$

$S U(3)_{c} \times S U(2)\left\llcorner x U(1)_{y}\right.$ $x U(1)_{P Q}$

$z=0$
2 Higgs Doublets
$z=L$ H_{u}, H_{d}

	H_{u}	H_{d}	Q	\bar{u}	\bar{d}	L	\bar{e}
Y	$1 / 2$	$-1 / 2$	$1 / 6$	$-2 / 3$	$1 / 3$	$-1 / 2$	1
PQ	1	1	$-1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 2$

mass

Spectrum

100's of GeV:
Rest of level 1 KK -modes
Level 1 hypercharge
gauge KK-mode

—— B5 "axino" ${ }^{\sim} 10 \mathrm{keV}$ to GeV

Collider Pheno

NLSP decays:

partner of hypercharge gauge boson decays through the anomaly

$$
\begin{gathered}
A_{\mu}^{(1)} \rightarrow \gamma(Z)+B_{5} \quad f_{\mathrm{PQ}} \equiv \frac{1}{g_{5 D}^{\mathrm{PQ}} \sqrt{L}} \\
\Gamma_{\gamma, Z} \approx \frac{\alpha^{2}}{192 \pi^{3} c_{w}^{4} f_{\mathrm{PQ}}^{2}} m^{(1) 3}\left(\sum_{f} q_{\mathrm{PQ}}^{f} q_{Y}^{f_{Y}^{2}}\right)^{2}\left(c_{w}^{2}, s_{w}^{2}\right) .
\end{gathered}
$$

$$
\Delta x=\gamma v \tau \approx 46 \mathrm{~cm}\left(\frac{10^{3} \mathrm{GeV}}{m^{(1)}}\right)^{3}\left(\frac{f_{\mathrm{PQ}}}{10^{9} \mathrm{GeV}}\right)^{2} \sqrt{\left(\frac{E}{m^{(1)}}\right)^{2}-1} .
$$

Other NLSP's?

Some rough constraints

- to be safe, want NLSP lifetime < 1s
- hadronic decays of the Z are dangerous
- $f_{P Q}<10^{14} \mathrm{GeV}$
- also want to avoid HDM so $\mathrm{m}_{B 5}>\mathrm{KeV}\left(\mathrm{g}>10^{-9}\right)$
- for 'interesting' coll. pheno, $f<10^{\wedge} 10 \mathrm{GeV}$

Dark Matter Pheno

Small gauge coupling:

too much if thermal
reheat (what is thy?)
good reason to believe okay
(studies of axino dm)

O(1) gauge coupling

 (weak scale Goldstone mass)
Standard WIMP analysis:

annihilation through s-channel Higgses
large $\tan \beta$

Future Study

- Can something like this be done in a little Higgs with T-parity (deconstruction)?
- non-trivial (NN no-go, orbifolds are special)
- Warped space
- collider study of look-alikes
- model distinction?
- detailed DM study
- Strong CP problem - other related scenarios
- other NLSP's? Heavy charged tracks - late decay

Conclusions

- We found a way to fake signals of GMSB
- copious Z's and photons (displaced decays)
- model is a bit of a "straw man" (little Higgs?)
- some cool physics along the way
- anomalies, spontaneous/explicit symmetry breaking, non-local interactions, 5D goldstones
- new DM candidate in PQ-UED
- Not immediately ruled out - further study

