Inert Higgs Doublet Model:

Dark Matter Implication and Collider Phenomenology

In collaboration with E. Dolle, X. Miao and B. Thomas

Introduction

- Inert Higgs Doublet Model
- Experimental and Theoretical Constraints
- Dark Matter Relic Density
- Sellider Phenomenology

WMAP: Ωh²=0.112 ± 0.009

WIMP: natural candidate for dark matter

- Spin 1/2 DM: neutralino LSP in MSSM
- Spin 1 DM: LKP photon in UED G. Servant and I.M.P.Tait, NPB 650, 391 (2003)
- Spin 0 DM
 - -SM + extra scalar S

V. Silveira and A. Zee, PLB 161, 136 (1985)

J. McDonald, PRD 50, 3637 (1994)

C.P. Burgess, M. Pospelov and T. ter Veldhuis, NPB 619, 709 (2001)

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \partial_{\mu} S \, \partial^{\mu} S - \frac{m_0^2}{2} \, S^2 - \frac{\lambda_S}{4} \, S^4 - \lambda \, S^2 \, H^{\dagger} H$$

Viable DM region: 100 GeV $\leq m_h \leq$ 200 GeV, 10 $\leq m_S \leq$ 100 GeV fine tuned !

-SM + extra SU(2) _ scalar doublet: WIMP

Viable DM region: 100 GeV $\leq m_h \leq$ 200 GeV, 10 $\leq m_S \leq$ 100 GeV fine tuned !

-SM + extra SU(2) scalar doublet: WIMP

WMAP: Ωh²=0.112 ± 0.009

WIMP: natural candidate for dark matter

- Spin 1/2 DM: neutralino LSP in MSSM
- Spin 1 DM: LKP photon in UED G. Servant and I.M.P.Tait, NPB 650, 391 (2003)
- Spin 0 DM
 - -SM + extra scalar S

V. Silveira and A. Zee, PLB 161, 136 (1985)

J. McDonald, PRD 50, 3637 (1994)

C.P. Burgess, M. Pospelov and T. ter Veldhuis, NPB 619, 709 (2001)

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \partial_{\mu} S \, \partial^{\mu} S - \frac{m_0^2}{2} \, S^2 - \frac{\lambda_S}{4} \, S^4 - \lambda \, S^2 \, H^{\dagger} H$$

Viable DM region: 100 GeV $\leq m_h \leq$ 200 GeV, 10 $\leq m_S \leq$ 100 GeV fine tuned !

-SM + extra SU(2) _ scalar doublet: WIMP

Inert Higgs Doublet Model

Introduce another Higgs field that <u>only couples to gauge sector</u>

impose Z₂ parity: SM particles + , extra Higgs: -

$$H_1 = H_{\rm SM}$$
 $H_2 = \begin{pmatrix} H^+ \\ (S+iA)/\sqrt{2} \end{pmatrix}$ lightest one:
DM candicate

- "Inert" Higgs Doublet Model (IHDM)
- first proposed in late 70's, neutrino mass

N.G.Deshpande and E. Ma, PRD 18, 2574 (1978)

- naturalness problem in SM R. Barbieri, L.J. Hall and V.S. Rychkov, PRD 74, 015007 (2006)
- appears in left-right Twin Higgs models

Z. Chacko, H.S. Goh and R. Harnik, JHEP 0601, 108 (2006)

- majorana neutrino mass E. Ma, PRD 73, 077301 (2006)
- electroweak symmetry breaking T. Hambye and M.H.G. Tytgat, PLB 659, 651 (2008)
- grand unification M. Lisanti and J.G. Wacker, 0704.2816
- leptogenesis E. Ma, MPLA 21, 1777 (2006),
 - T. Hambye, K. Kannike, E. Ma and M. Raidal, PRD75, 095003 (2007)

Dark matter studies

- relic density L. Honorez, E. Nezri, J. Oliver, M. Tytgat, JCAP 0702, 028 (2007)
- direct detection
 - R. Barbieri, L.J. Hall and V.S. Rychkov, PRD 74, 015007 (2006)
 L. Honorez, E. Nezri, J. Oliver, M. Tytgat, JCAP 0702, 028 (2007)
 D. Majumdar and A. Ghosal, MPLA23, 2011 (2008)

neutrino signature

P. Agrawall, E.M. Dolle and C.A. Krenke, PRD 79, 015015 (2009)

S. Andreas, M.H.G. Tygat and Q. Swillens, 0901.1750

• gamma ray spectrum

L. Honorez, E. Nezri, J. Oliver, M. Tytgat, JCAP 0702, 028 (2007) M. Gustafsson, E. Lundstrom, L. Bergstrom and J. Edsjo, PRL99, 041301 (2007)

- positron and antiproton E. Nezri, M.H.G. Tytgat and G. Vertongen, 0901.2556
- LEP II limit E. Lundstrom, M. Gustafsson and J. Edsjo, 0810.3924
- collider SA with $A \rightarrow SII$

Q.H. Cao, E. Ma and G. Rajasekaran, PRD 76, 095011 (2007)

IHDM: parameters

-

 $V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$

$$m_{h}^{2} = -2\mu_{1}^{2} = 2\lambda_{1}v^{2}$$

$$m_{H^{\pm}}^{2} = \mu_{2}^{2} + \lambda_{3}v^{2}/2,$$

$$m_{S}^{2} = \mu_{2}^{2} + (\lambda_{3} + \lambda_{4} + \lambda_{5})v^{2}/2,$$

$$m_{A}^{2} = \mu_{2}^{2} + (\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}/2.$$

$$\delta_{1} = m_{H^{\pm}} - m_{S} = -\frac{(\lambda_{4} + \lambda_{5})v^{2}}{2(m_{H^{\pm}} + m_{S})}, \quad \delta_{2} = m_{A} - m_{S} = -\frac{\lambda_{5}v^{2}}{(m_{A} + m_{S})}.$$

$$\mu_{1}^{2}, \mu_{2}^{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}) \longrightarrow (v, m_{h}, m_{S}, \delta_{1}, \delta_{2}, \lambda_{2}, \lambda_{L})$$

IHDM: parameters

-

 $V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$

$$\begin{split} & \overbrace{m_{h}^{2} = -2\mu_{1}^{2} = 2\lambda_{1}v^{2}}_{m_{H^{\pm}}^{2} = \mu_{2}^{2} + \lambda_{3}v^{2}/2, \\ m_{S}^{2} = \mu_{2}^{2} + (\lambda_{3} + \lambda_{4} + \lambda_{5})v^{2}/2, \\ m_{A}^{2} = \mu_{2}^{2} + (\lambda_{3} + \lambda_{4} - \lambda_{5})v^{2}/2. \end{split}$$

$$\delta_{1} = m_{H^{\pm}} - m_{S} = -\frac{(\lambda_{4} + \lambda_{5})v^{2}}{2(m_{H^{\pm}} + m_{S})}, \quad \delta_{2} = m_{A} - m_{S} = -\frac{\lambda_{5}v^{2}}{(m_{A} + m_{S})}. \end{split}$$

$$(\mu_{1}^{2}, \mu_{2}^{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}) \longrightarrow (v, m_{h}, m_{S}, \delta_{1}, \delta_{2}, \lambda_{2}, \lambda_{L})$$

$$(\mu_{1}^{2}, \mu_{2}^{2}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}) \longrightarrow (v, m_{h}, m_{S}, \delta_{1}, \delta_{2}, \lambda_{2}, \lambda_{L})$$
S. Su

IHDM: parameters

-

 $V = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left[(H_1^{\dagger} H_2)^2 + h.c. \right]$

$$\begin{split} & \begin{array}{l} & \begin{array}{l} m_h^2 = -2\mu_1^2 = 2\lambda_1 v^2 \\ m_{H^\pm}^2 &= \mu_2^2 + \lambda_3 v^2/2, \\ m_S^2 &= \mu_2^2 + (\lambda_3 + \lambda_4 + \lambda_5) v^2/2, \\ m_A^2 &= \mu_2^2 + (\lambda_3 + \lambda_4 - \lambda_5) v^2/2. \\ \end{array} \\ & \delta_1 = m_{H^\pm} - m_S = -\frac{(\lambda_4 + \lambda_5) v^2}{2(m_{H^\pm} + m_S)}, \quad \delta_2 = m_A - m_S = -\frac{\lambda_5 v^2}{(m_A + m_S)}. \\ \hline & (\mu_1^2, \mu_2^2, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5) & & & & \\ \hline & (v, m_h, m_S, \delta_1, \delta_2, \lambda_2, \lambda_L) \\ & & \\ & \\ & \\ & \text{S.Su} & \begin{array}{c} \text{SAH}^{\pm} \text{ couplings} \\ \text{not important for DM analysis} \end{array} & \begin{array}{c} \text{SSh coupling} \ \lambda_L = \lambda_3 + \lambda_4 + \lambda_5 \\ & 6 \end{array} \end{split}$$

W and Z decay width

 $W \rightarrow S/A + H^{\pm}, Z \rightarrow S + A, H^{+}H^{-}$

 $2m_{S} + \delta_{1} > m_{W}, \quad 2m_{S} + \delta_{1} + \delta_{2} > m_{W},$ $2m_{S} + \delta_{2} > m_{Z}, \quad 2m_{S} + 2\delta_{1} > m_{Z}.$

LEP II constraints

Neutral and charged Higgs searches at LEP and Tevatron: does not apply rely on VVh coupling and the couplings of Higgses to fermions

Charged Higgs searches: $m_{H\pm} > 74 - 79$ GeV at 95% C.L. LEP: $H^+ \rightarrow c\bar{s}, H^+ \rightarrow \tau^+ \nu$. CDF: t \rightarrow H⁺b, with H⁺ decays to qq', lv, W⁺ ϕ

Electroweak Precision Test

Electroweak Precision Test

$$H_2 = \left(\begin{array}{c} H^+ \\ (S+iA)/\sqrt{2} \end{array} \right)$$

Dark matter direct detection

Dark matter direct detection

Theoretical constraints

Vacuum stability

$$\lambda_{1,2} > 0$$

$$\lambda_3, \lambda_3 + \lambda_4 - |\lambda_5| > -2\sqrt{\lambda_1 \lambda_2}.$$

+ Perturbativity: RG running of λ_1 from non-SM terms < 50% of SM term

$$\lambda_3^2 + (\lambda_3 + \lambda_4)^2 + \lambda_5^2 < 12\lambda_1^2$$
$$\lambda_2 < 1$$

Dark matter relic density

- Use MicrOMEGA /CalCHEP to calculate the relic density
 - → low mass region: m_S < 100 GeV</p>
 - ⇒ high mass region: m_S > 400 GeV

 $\delta_1 = m_{H\pm} - m_s = 50 \text{ GeV}, \ \lambda_L = 0.01$

- $\delta_2 = m_A m_S = 10 \text{ GeV}$
- $\delta_2 = m_A m_S = 7 \text{ GeV}$
- δ₂=m_A-m_S = 5 GeV

Low mass region: vary δ_2

 $\delta_1 = m_{H\pm} - m_s = 50 \text{ GeV}, \ \lambda_L = 0.01$

- δ₂=m_A-m_S = 10 GeV
- δ₂=m_A-m_S = 7 GeV
- δ₂=m_A-m_S = 5 GeV

Low mass region: vary δ_2

 $\delta_1 = m_{H\pm} - m_S = 50 \text{ GeV}, \ \lambda_L = 0.01$

- $\delta_2 = m_A m_S = 10 \text{ GeV}$
- $\delta_2 = m_A m_S = 7 \text{ GeV}$
- δ₂=m_A-m_S = 5 GeV

Low mass region: vary δ_2

 $\delta_1 = m_{H\pm} - m_S = 50 \text{ GeV}, \lambda_L = 0.01$

- δ₂=m_A-m_S = 10 GeV
- δ₂=m_A-m_S = 7 GeV
- δ₂=m_A-m_S = 5 GeV

 $\delta_1 = m_{H\pm} - m_s = 50 \text{ GeV}, \ \lambda_L = 0.01$

Low mass region: vary **b**₂

- δ₂=m_A-m_S = 10 GeV
- δ₂=m_A-m_S = 7 GeV
- δ₂=m_A-m_S = 5 GeV

Low mass region: vary **b**₂

- δ₂=m_A-m_S = 10 GeV
- δ₂=m_A-m_S = 7 GeV
- δ₂=m_A-m_S = 5 GeV

 $\delta_1 = m_{H\pm} - m_s = 50 \text{ GeV}, \ \lambda_L = 0.01$

- δ₂=m_A-m_S = 10 GeV
- δ₂=m_A-m_S = 7 GeV
- δ₂=m_A-m_S = 5 GeV

14

Low mass region: vary **b**₂

Low mass region: vary **b**₂

 $\delta_1 = m_{H\pm} - m_s = 50 \text{ GeV}, \ \lambda_L = 0.01$

Low mass region: low mh

Low mass region: low mh

S. Su

17

Low mass region: low mh

S. Su

19

High mass region: low mh

• small m_h

• large $m_h \sim 500 \text{ GeV}$, large δ_1 , δ_2 is needed

annihilation cross section is too large, relic density is too small. 20

S. Su

Viable region for relic density

	DM	SM h	ms	δ1, δ2	λι
(I)	low m _s	low m _h	~20 GeV	both large	~ -0.2
(II)			60 – 80 GeV	at least one is large	-0.2 - 0.2
(111)		high m _h	50 – 75 GeV	large δ ₁ δ₂ < 8 GeV	-1 - 3
(IV)			~ 75 GeV	large δ ₁ , δ ₂	-1 - 3
(V)	high m _s	low m _h	500 – 1000 GeV	small δ ₁ , δ ₂	-0.2 - 0.2

S. Su

Collider signatures

S. Su

Leptonic signals

Focus on purely leptonic signals

- single lepton: SH[±]
- dilepton: SA, H⁺H⁻
- trilepton: AH[±]

• • • • •

Dominant background

• WW, ZZ, WZ

Benchmark points

	m _s (GeV)	(δ ₁ , δ ₂) (GeV)	λ∟
(I)	25	(100,100)	- 0.2
(II)	79	(50,10)	- 0.18
(111)	73	(10,50)	0
(IV)	82	(50,50)	- 0.2

	σ	(I)	(11)	(111)	(IV)	
S (ph)	pp→SA	0.543	0.475	0.251	0.181	
(66)	pp→H⁺H⁻	0.103	0.093	0.438	0.0852	
	pp→SH±	0.920	0.356	1.076	0.319	
	pp→AH [±]	0.189	0.303	0.372	0.157	
B (pb)	pp→WW	71.8				
	pp→ZZ	10.0				
	pp→WZ	27				

Dilepton signal from Z*

Dilepton signals:

• $pp \rightarrow SA \rightarrow SSZ^{(*)} \rightarrow SSI^{+}I^{-}$ • $pp \rightarrow H^{+}H^{-} \rightarrow SSW^{(*)}W^{(*)} \rightarrow SSI^{+}I^{-}vv$

Two isolated opposite charge e or μ with missing E_T, no hard jets.

Background:

- from IHDM pp \rightarrow H⁺H⁻ \rightarrow SSW^(*)W^(*) \rightarrow SSI⁺I⁻vv
- from SM
 - pp→WW→l+l⁻vv
 - pp→ZZ→l⁺l⁻vv

• Benchmark I: $m_s = 25 \text{ GeV}$, $(\delta_1, \delta_2) = (100, 100) \text{ GeV}$

Signal: pp→SA→SSZ→SSI⁺I⁻, I=e,µ

• Benchmark I: $m_s = 25 \text{ GeV}$, $(\delta_1, \delta_2) = (100, 100) \text{ GeV}$

Signal: pp→SA→SSZ→SSI⁺I⁻, I=e,µ

• Benchmark I: $m_s = 25 \text{ GeV}$, $(\delta_1, \delta_2) = (100, 100) \text{ GeV}$

Signal: pp→SA→SSZ→SSI⁺I⁻, I=e,µ

• Benchmark I: $m_s = 25 \text{ GeV}$, $(\delta_1, \delta_2) = (100, 100) \text{ GeV}$

Cuts

H_T >150 GeV

ME_T >15 GeV

- P_T¹>15 GeV, |η₁|<2.5
- ΔR(II)>0.4
- P_T^z >50 GeV
- 80 GeV < M_{II} < 100 GeV

no jets with Pⁱ>20 GeV,
 |η_j|<2.5

Prelimenary		before cuts	after cuts
S (fb)	SA	41.27	5.83
B (fb) H ⁺ H ⁻		5	0.048
	ww	3404.6	1.21
	ZZ	280.8	3.86
L=100 fb ⁻¹		S/B	0.115
		s/√(B)	8.18

• Benchmark IV: $m_s = 82 \text{ GeV}$, $(\delta_1, \delta_2) = (50, 50) \text{ GeV}$

Signal: pp→SA→SSZ*→SSI⁺I⁻, I=e,µ

• Benchmark IV: $m_s = 82 \text{ GeV}$, $(\delta_1, \delta_2) = (50, 50) \text{ GeV}$

Signal: pp→SA→SSZ*→SSI⁺I⁻, I=e,µ

• Benchmark IV: m_s = 82 GeV, (δ₁, δ₂)=(50,50) GeV

Signal: pp \rightarrow SA \rightarrow SSZ* \rightarrow SSI*I-, I=e, μ

Two isolated opposite charge e or μ with large missing E_T , no hard jets.

S. Su

• Benchmark IV: m_S = 82 GeV, (δ₁, δ₂)=(50,50) GeV

Cuts

- H_T >200 GeV
- ME_T >100 GeV
- P_Tⁱ >15 GeV, |η_i|<2.5
- cos(фіі)>0.8
- ΔR(II)>0.4
- P_T^z >100 GeV
- M_{II} < 40 GeV
- no jets with P_Tⁱ>20 GeV,
 |η_j|<2.5

Prelimenary		before cuts	after cuts
S (fb)	SA	11.42	0.130
B (fb) H ⁺ H ⁻		3.56	0
	WW	3404.6	0.025
	ZZ	280.8	0.0025
L=100 fb ⁻¹		S/B	4.70
		s/√(B)	7.81

- Benchmark II: $m_s = 79 \text{ GeV}$, $(\delta_1, \delta_2) = (50, 10) \text{ GeV}$
- Signal: pp \rightarrow SA \rightarrow SSZ* \rightarrow SSI⁺I⁻, I=e,µ
- Soft leptons. Difficult.

• Benchmark III: $m_s = 73 \text{ GeV}$, $(\delta_1, \delta_2) = (10, 50) \text{ GeV}$

Signal: pp \rightarrow SA \rightarrow SSZ* \rightarrow SSI⁺I⁻, I=e,µ; also including AH[±]

• Benchmark III: $m_s = 73 \text{ GeV}$, $(\delta_1, \delta_2) = (10, 50) \text{ GeV}$

Signal: pp \rightarrow SA \rightarrow SSZ* \rightarrow SSI⁺I⁻, I=e,µ; also including AH[±]

• Benchmark III: $m_s = 73 \text{ GeV}$, $(\delta_1, \delta_2) = (10, 50) \text{ GeV}$

Signal: pp \rightarrow SA \rightarrow SSZ* \rightarrow SSI⁺I⁻, I=e,µ; also including AH[±]

• Benchmark III: $m_s = 73 \text{ GeV}$, $(\delta_1, \delta_2) = (10, 50) \text{ GeV}$

Cuts

- H_T >200 GeV
- ME_T >100 GeV
- P_T¹>15 GeV, |η₁|<2.5
- cos(ф_{II})>0.8
- ∆R(II)>0.4
- P_T^z >100 GeV
- M_{II} < 40 GeV
- no jets with P_Tⁱ>20 GeV,
 |η_j|<2.5

Prelimenary		before cuts	after cuts
S (fb)	SA	19.51	0.146
B (fb) H ⁺ H ⁻		17.84	0
	ww	3404.6	0.025
	ZZ	280.8	0.0025
L=100 fb ⁻¹		S/B	5.31
		s/√(B)	8.81

Collider reach @ LHC

pp→SA→SSZ^(*)→SSI⁺I⁻

Prelimenary

	ms	(δ ₁ , δ ₂)	S	В	S/B	S/√(B)
	GeV	GeV	fb	fb	L=1	00 fb ⁻¹
(I)	25	(100,100)	5.826	5.068	0.115	8.18
(II)	75	(50,10)	difficult			
(111)	75	(10,50)	0.146	0.0276	5.31	8.81
(IV)	75	(50,50)	0.130	0.028	4.70	7.81

Conclusions

- Final Stress Field Field
- Viable regions of parameter spaces provide correct relic density

	DM	SM h	ms	δ1, δ2	λι
(I)	low m _s	low m _h	~20 GeV	both large	~ -0.2
(II)			60 – 80 GeV	at least one is large	-0.2 - 0.2
(III)		high m _h	50 – 75 GeV	large δ ₁ δ ₂ < 8 GeV	-1 - 3
(IV)			~ 75 GeV	large δ ₁ , δ ₂	-1 - 3
(V)	high m _s	low m _h	500 – 1000 GeV	small δ ₁ , δ ₂	-0.2 - 0.2

Rich collider phenomenology

* dilepton signal from SA production observable for large δ_2 S. Su \$34\$