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Dark matter candidate
-

WIMP: natural candidate for dark matter

WMAP: Ωh2=0.112 ± 0.009

•Spin 1/2 DM: neutralino LSP in MSSM
•Spin 1 DM: LKP photon in UED
•Spin 0 DM

-SM + extra scalar S

-SM + extra SU(2)L scalar doublet: WIMP

V. Silveira and A. Zee, PLB 161, 136 (1985)
J. McDonald, PRD 50, 3637 (1994)
C.P. Burgess, M. Pospelov and T. ter Veldhuis, NPB 619, 709 (2001)

G. Servant and I.M.P.Tait, NPB 650, 391 (2003)

This paper is organized as follows. In the next section we identify the three pa-

rameters which describe the model, and determine the general conditions which lead

to acceptable masses and to sufficiently stable dark matter. In section 3 we calculate

the annihilation cross section of S-particles and give the resulting cosmic abundance as

a function of masses and couplings. This calculation is similar to the analysis of Ref.

[10]. We perform the numerical analysis for the most interesting part of the parameter

space, with 100 GeV ≤ mh ≤ 200 GeV and 10 GeV ≤ mS ≤ 100 GeV. In section 4

we obtain the cross section for elastic scattering with ordinary matter and apply the

constraints, imposed by direct and indirect searches. Section 5 computes the cross

sections for the missing energy events which are predicted for colliders due to the pair

production of S particles. It also contains a prediction for the degradation of the Higgs

boson signal at hadronic colliders, when the Higgs boson is allowed to decay into a pair

of S particles. Our conclusions are reserved for section 6.

2 The Model’s Lagrangian

The lagrangian which describes our model has the following simple form:

L = LSM +
1

2
∂µS ∂µS −

m2
0

2
S2 −

λS

4
S4 − λ S2 H†H, (2.1)

where H and LSM respectively denote the Standard Model Higgs doublet and la-

grangian, and S is a real scalar field which does not transform under the Standard

Model gauge group. (Lagrangians similar to this have been considered as models for

strongly-interacting dark matter [14] and as potential complications for Higgs searches

[15]. The same number of free parameters appears in the simplest Q-ball models [16].)

We assume S to be the only new degree of freedom relevant at the electroweak scale,

permitting the neglect of nonrenormalizable couplings in eq. (2.1), which contains all

possible renormalizable interactions consistent with the field content and the symmetry

S → −S.

Within this framework the properties of the field S are described by three param-

eters. Two of these, λS and m0 are internal to the S sector, characterizing the S mass

and the strength of its self-interactions. Of these, λS is largely unconstrained and can

be chosen arbitrarily. We need only assume it to be small enough to permit the pertur-

4

Viable DM region: 100 GeV ≤ mh ≤ 200 GeV, 10 ≤ mS ≤ 100 GeV
fine tuned !
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Figure 2: Four samples of the log λ–mS relationship between λ and mS, which gives

the correct cosmic abundance of S scalars. For these plots the Higgs mass is chosen to

be 100, 120, 140, and 200 GeV. The abundance is chosen to be Ωsh2 = 0.3

These expressions may be used with standard results for the Standard Model Higgs

decay widths to predict how the primordial S-particle abundance depends on the pa-

rameters mS and λ. Standard procedures [18] give the present density of S particles

to be

Ωsh
2 =

(1.07 · 109) xf

g1/2
∗ MPl GeV 〈σvrel〉

. (3.5)

Here g∗, as usual, counts the degrees of freedom in equilibrium at annihilation, xf =

mS/Tf is the inverse freeze-out temperature in units of mS, which can be determined

by solving the equation xf # ln
[

0.038(g∗xf )−1/2MPl mS〈σv〉
]

. Finally, 〈· · ·〉 denotes

the relevant thermal average.

The abundance constraint is obtained by requiring Ωsh2 to be in the cosmologically

preferred range, which imposes a relation between λ and mS. For our numerical results

we use Ωsh2 = 0.3, which corresponds to a large value for Ωs = 0.6, perhaps the largest

possible value consistent with observations. We choose such a large Ωs in order to

be conservative in our later predictions for the signals to be expected in dark matter

9

C.P. Burgess, M. Pospelov and T. ter Veldhuis,
 NPB 619, 709 (2001)
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Inert Higgs Doublet Model
-

➡ Introduce another Higgs field that only couples to gauge sector

impose Z2 parity: SM particles + , extra Higgs: - 

“Inert” Higgs Doublet Model (IHDM)
• first proposed in late 70’s, neutrino mass

• naturalness problem in SM
• appears in left-right Twin Higgs models

• majorana neutrino mass
• electroweak symmetry breaking
• grand unification
• leptogenesis

N.G.Deshpande and E. Ma, PRD 18, 2574 (1978)

R. Barbieri, L.J. Hall and V.S. Rychkov, PRD 74, 015007 (2006)

Z. Chacko, H.S. Goh and R. Harnik, JHEP 0601, 108 (2006)

E. Ma, PRD 73, 077301 (2006)

T. Hambye and M.H.G. Tytgat, PLB 659, 651 (2008)

M. Lisanti and J.G. Wacker, 0704.2816

E. Ma, MPLA 21, 1777 (2006), 
T. Hambye, K. Kannike, E. Ma and M. Raidal, PRD75, 095003 (2007)

H1 = HSM

relic density could be obtained for the dark matter mass around 40 GeV − 80 GeV or larger
than 600 GeV. Ref. [14, 15] studied the neutrino signatures from dark matter annihilation
in the IHDM. Continuous gamma ray spectrum from fragmentation and monochromatic
gamma ray lines are studied in Ref. [13] and [16] respectively. Positron and antiproton
signatures are studied in Ref. [17]. There are also collider analysis on the LEP II limit for
the IHDM [18] as well as collider signatures of SA associated production with A → Sl+l−

at the LHC [19]. Direct detection of the IHDM dark matter has been studied in [7, 13, 20].
In this work, we performed a complete analyzed the dark matter relic in the IHDM

over the whole parameter space, taken into account various theoretical and experimental
constraints on the IHDM. The latest results of the collider constraints based on χ0

1χ
0
2 search

at the LEP are imposed. Unlike in Ref. [13], in which only a low SM Higgs mass mh = 100
GeV and 200 GeV are considered, we also considered a high Higgs mass mh = 500 GeV.
In Ref. [13], the mass splitting between A, H± and the dark matter candidate S is fixed to
be 10 (5) GeV and 50 (10) GeV respectively for low (high) mass region. We studied the
cases when the mass splittings between A, H± and the dark matter candidate S are small,
in which the coannihilation plays an important role, as well as the cases when the mass
splittings are large. In regions that overlap with those analyzed in Ref. [13], our results
agree with the literature. We identified additional regions of parameter space, in which
the dark matter relic density is also consistent with the WMAP result but was overlooked
before. We also present our results in the parameter spaces of physical Higgs masses and
Higgs couplings, which can easily be used for the purpose of collider study and dark matter
detections.

The rest of the paper is organized as follows: Sec. II briefly present the IHDM. We
discussed the theoretical and experimental constraints on the model parameter space in
Sec. III. Sec. IV presented our results on the relic density analysis. We concluded in Sec. V.

II. THE INERT HIGGS DOUBLET MODEL

The IHDM is an extension of the Higgs sector of the SM. Besides the usual Higgs doublet
H1, additional Higgs doublet H2 is introduced:

H2 =

(

H+

(S + iA)/
√

2

)

, (2)

which is charged under SU(2)L × U(1)Y as (2, 1/2). Unlike the SM Higgs boson, which
couples to both the gauge bosons and matter fermions, the extra Higgs doublet couples
to the gauge sector only. Such couplings can be guaranteed by imposing a Z2 symmetry
(sometimes also called as matter parity) where all the particles except H2 are even under the
Z2. While H1 obtains a vacuum expectation value (VEV) v/

√
2 = 174 GeV as in the SM,

H2 does not obtain a VEV: 〈H2〉 = 0. The Z2 symmetry is, therefore, not spontaneously
broken. The lightest particle in H2 is stable and could be a good dark matter candidate.

3

lightest one: 
DM candicate
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Dark matter studies
-

• relic density
• direct detection

•neutrino signature 

• gamma ray spectrum

• positron and antiproton  
• LEP II limit  
• collider SA with A→Sll   

L. Honorez, E. Nezri, J. Oliver, M. Tytgat, JCAP 0702, 028 (2007)

P. Agrawall, E.M. Dolle and C.A. Krenke, PRD 79, 015015 (2009)
S. Andreas, M.H.G. Tygat and Q. Swillens, 0901.1750

L. Honorez, E. Nezri, J. Oliver, M. Tytgat, JCAP 0702, 028 (2007)
M. Gustafsson, E. Lundstrom, L. Bergstrom and J. Edsjo, PRL99, 041301 (2007)

E. Nezri, M.H.G. Tytgat and G. Vertongen, 0901.2556

E. Lundstrom, M. Gustafsson and J. Edsjo, 0810.3924

Q.H. Cao, E. Ma and G. Rajasekaran, PRD 76, 095011 (2007)

R. Barbieri, L.J. Hall and V.S. Rychkov, PRD 74, 015007 (2006)
L. Honorez, E. Nezri, J. Oliver, M. Tytgat, JCAP 0702, 028 (2007)
D. Majumdar and A. Ghosal, MPLA23, 2011 (2008)  
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IHDM: parameters
-
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2|H2|2 + λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2 + λ4|H†
1H2|2 +

λ5

2

[

(H†
1H2)

2 + h.c.
]

.

U(1) λ5 = 0

SU(2) × U(1) H1

〈H1〉 =
v√
2

v = −µ2
1/λ1 = 248 µ2

2 > 0

〈H2〉 = 0.

The most general potential in the Higgs sector can be written as

V = µ2
1|H1|2+µ2

2|H2|2+λ1|H1|4+λ2|H2|4+λ3|H1|2|H2|2+λ4|H†
1H2|2+

λ5

2

[

(H†
1H2)

2 + h.c.
]

.

(3)
Notice that the usual mixing term µ2

12H
†
1H2 is forbidden by the Z2 symmetry. After

electroweak symmetry breaking, three degree of freedom in H1 are eaten by massive gauge
bosons W±, Z. We are left with one physical Higgs boson h, which resembles the SM Higgs
boson. The mass of h is related to λ1 via

m2
h = −2µ2

1 = 2λ1v
2. (4)

The masses of the scalars in H2 doublet are related to the parameters in the Higgs potential
as

m2
H± = µ2

2 + λ3v
2/2, (5)

m2
S = µ2

2 + (λ3 + λ4 + λ5)v
2/2, (6)

m2
A = µ2

2 + (λ3 + λ4 − λ5)v
2/2. (7)

(8)

We define the mass difference δ1 and δ2 as

δ1 = mH± − mS = −
(λ4 + λ5)v2

2(mH± + mS)
, δ2 = mA − mS = −

λ5v2

(mA + mS)
. (9)

It is obvious that λ4 controls the mass splitting between the charged states and the neutral
states, while λ5 controls the mass splitting between the CP odd state and CP even states.
In our analysis below, we assume that the CP even scalar S is LIP, therefore the dark
matter candidate: δ1 > 0, δ2 > 0. The numerical results obtained below are similar if A is
the LIP.

The Higgs potential in Eq. (3) has seven parameters:

(µ2
1, µ

2
2, λ1, λ2, λ3, λ4, λ5). (10)

They could be replaced by the Higgs VEV v, physical Higgs masses, mass splittings, and
sum of quartic couplings λL = λ3 + λ4 + λ5 as

(v, mh, mS, δ1, δ2, λ2, λL). (11)

In particular, λL shows up in the couplings SSh and SShh, which is relevant for the dark
matter annihilation process. It is therefore convenient to pick λL as a model parameter.
Quartic coupling λ2 only shows up in self-couplings involving S, A and H±. It does not
play an important role for the dark matter analysis that we present below.

4

The most general potential in the Higgs sector can be written as

V = µ2
1|H1|2+µ2

2|H2|2+λ1|H1|4+λ2|H2|4+λ3|H1|2|H2|2+λ4|H†
1H2|2+

λ5

2

[

(H†
1H2)

2 + h.c.
]

.

(3)
Notice that the usual mixing term µ2

12H
†
1H2 is forbidden by the Z2 symmetry. After

electroweak symmetry breaking, three degree of freedom in H1 are eaten by massive gauge
bosons W±, Z. We are left with one physical Higgs boson h, which resembles the SM Higgs
boson. The mass of h is related to λ1 via

m2
h = −2µ2

1 = 2λ1v
2. (4)

The masses of the scalars in H2 doublet are related to the parameters in the Higgs potential
as

m2
H± = µ2

2 + λ3v
2/2, (5)

m2
S = µ2

2 + (λ3 + λ4 + λ5)v
2/2, (6)

m2
A = µ2

2 + (λ3 + λ4 − λ5)v
2/2. (7)

(8)

We define the mass difference δ1 and δ2 as

δ1 = mH± − mS = −
(λ4 + λ5)v2

2(mH± + mS)
, δ2 = mA − mS = −

λ5v2

(mA + mS)
. (9)

It is obvious that λ4 controls the mass splitting between the charged states and the neutral
states, while λ5 controls the mass splitting between the CP odd state and CP even states.
In our analysis below, we assume that the CP even scalar S is LIP, therefore the dark
matter candidate: δ1 > 0, δ2 > 0. The numerical results obtained below are similar if A is
the LIP.

The Higgs potential in Eq. (3) has seven parameters:

(µ2
1, µ

2
2, λ1, λ2, λ3, λ4, λ5). (10)

They could be replaced by the Higgs VEV v, physical Higgs masses, mass splittings, and
sum of quartic couplings λL = λ3 + λ4 + λ5 as

(v, mh, mS, δ1, δ2, λ2, λL). (11)

In particular, λL shows up in the couplings SSh and SShh, which is relevant for the dark
matter annihilation process. It is therefore convenient to pick λL as a model parameter.
Quartic coupling λ2 only shows up in self-couplings involving S, A and H±. It does not
play an important role for the dark matter analysis that we present below.

4

The most general potential in the Higgs sector can be written as

V = µ2
1|H1|2+µ2

2|H2|2+λ1|H1|4+λ2|H2|4+λ3|H1|2|H2|2+λ4|H†
1H2|2+

λ5

2

[

(H†
1H2)

2 + h.c.
]

.

(3)
Notice that the usual mixing term µ2

12H
†
1H2 is forbidden by the Z2 symmetry. After

electroweak symmetry breaking, three degree of freedom in H1 are eaten by massive gauge
bosons W±, Z. We are left with one physical Higgs boson h, which resembles the SM Higgs
boson. The mass of h is related to λ1 via

m2
h = −2µ2

1 = 2λ1v
2. (4)

The masses of the scalars in H2 doublet are related to the parameters in the Higgs potential
as

m2
H± = µ2

2 + λ3v
2/2, (5)

m2
S = µ2

2 + (λ3 + λ4 + λ5)v
2/2, (6)

m2
A = µ2

2 + (λ3 + λ4 − λ5)v
2/2. (7)

(8)

We define the mass difference δ1 and δ2 as

δ1 = mH± − mS = −
(λ4 + λ5)v2

2(mH± + mS)
, δ2 = mA − mS = −

λ5v2

(mA + mS)
. (9)

It is obvious that λ4 controls the mass splitting between the charged states and the neutral
states, while λ5 controls the mass splitting between the CP odd state and CP even states.
In our analysis below, we assume that the CP even scalar S is LIP, therefore the dark
matter candidate: δ1 > 0, δ2 > 0. The numerical results obtained below are similar if A is
the LIP.

The Higgs potential in Eq. (3) has seven parameters:

(µ2
1, µ

2
2, λ1, λ2, λ3, λ4, λ5). (10)

They could be replaced by the Higgs VEV v, physical Higgs masses, mass splittings, and
sum of quartic couplings λL = λ3 + λ4 + λ5 as

(v, mh, mS, δ1, δ2, λ2, λL). (11)

In particular, λL shows up in the couplings SSh and SShh, which is relevant for the dark
matter annihilation process. It is therefore convenient to pick λL as a model parameter.
Quartic coupling λ2 only shows up in self-couplings involving S, A and H±. It does not
play an important role for the dark matter analysis that we present below.

4

The most general potential in the Higgs sector can be written as

V = µ2
1|H1|2+µ2

2|H2|2+λ1|H1|4+λ2|H2|4+λ3|H1|2|H2|2+λ4|H†
1H2|2+

λ5

2

[

(H†
1H2)

2 + h.c.
]

.

(3)
Notice that the usual mixing term µ2

12H
†
1H2 is forbidden by the Z2 symmetry. After

electroweak symmetry breaking, three degree of freedom in H1 are eaten by massive gauge
bosons W±, Z. We are left with one physical Higgs boson h, which resembles the SM Higgs
boson. The mass of h is related to λ1 via

m2
h = −2µ2

1 = 2λ1v
2. (4)

The masses of the scalars in H2 doublet are related to the parameters in the Higgs potential
as

m2
H± = µ2

2 + λ3v
2/2, (5)

m2
S = µ2

2 + (λ3 + λ4 + λ5)v
2/2, (6)

m2
A = µ2

2 + (λ3 + λ4 − λ5)v
2/2. (7)

(8)

We define the mass difference δ1 and δ2 as

δ1 = mH± − mS = −
(λ4 + λ5)v2

2(mH± + mS)
, δ2 = mA − mS = −

λ5v2

(mA + mS)
. (9)

It is obvious that λ4 controls the mass splitting between the charged states and the neutral
states, while λ5 controls the mass splitting between the CP odd state and CP even states.
In our analysis below, we assume that the CP even scalar S is LIP, therefore the dark
matter candidate: δ1 > 0, δ2 > 0. The numerical results obtained below are similar if A is
the LIP.

The Higgs potential in Eq. (3) has seven parameters:

(µ2
1, µ

2
2, λ1, λ2, λ3, λ4, λ5). (10)

They could be replaced by the Higgs VEV v, physical Higgs masses, mass splittings, and
sum of quartic couplings λL = λ3 + λ4 + λ5 as

(v, mh, mS, δ1, δ2, λ2, λL). (11)

In particular, λL shows up in the couplings SSh and SShh, which is relevant for the dark
matter annihilation process. It is therefore convenient to pick λL as a model parameter.
Quartic coupling λ2 only shows up in self-couplings involving S, A and H±. It does not
play an important role for the dark matter analysis that we present below.

4

The most general potential in the Higgs sector can be written as

V = µ2
1|H1|2+µ2

2|H2|2+λ1|H1|4+λ2|H2|4+λ3|H1|2|H2|2+λ4|H†
1H2|2+

λ5

2

[

(H†
1H2)

2 + h.c.
]

.

(3)
Notice that the usual mixing term µ2

12H
†
1H2 is forbidden by the Z2 symmetry. After

electroweak symmetry breaking, three degree of freedom in H1 are eaten by massive gauge
bosons W±, Z. We are left with one physical Higgs boson h, which resembles the SM Higgs
boson. The mass of h is related to λ1 via

m2
h = −2µ2

1 = 2λ1v
2. (4)

The masses of the scalars in H2 doublet are related to the parameters in the Higgs potential
as

m2
H± = µ2

2 + λ3v
2/2, (5)

m2
S = µ2

2 + (λ3 + λ4 + λ5)v
2/2, (6)

m2
A = µ2

2 + (λ3 + λ4 − λ5)v
2/2. (7)

(8)

We define the mass difference δ1 and δ2 as

δ1 = mH± − mS = −
(λ4 + λ5)v2

2(mH± + mS)
, δ2 = mA − mS = −

λ5v2

(mA + mS)
. (9)

It is obvious that λ4 controls the mass splitting between the charged states and the neutral
states, while λ5 controls the mass splitting between the CP odd state and CP even states.
In our analysis below, we assume that the CP even scalar S is LIP, therefore the dark
matter candidate: δ1 > 0, δ2 > 0. The numerical results obtained below are similar if A is
the LIP.

The Higgs potential in Eq. (3) has seven parameters:

(µ2
1, µ

2
2, λ1, λ2, λ3, λ4, λ5). (10)

They could be replaced by the Higgs VEV v, physical Higgs masses, mass splittings, and
sum of quartic couplings λL = λ3 + λ4 + λ5 as

(v, mh, mS, δ1, δ2, λ2, λL). (11)

In particular, λL shows up in the couplings SSh and SShh, which is relevant for the dark
matter annihilation process. It is therefore convenient to pick λL as a model parameter.
Quartic coupling λ2 only shows up in self-couplings involving S, A and H±. It does not
play an important role for the dark matter analysis that we present below.
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In particular, λL shows up in the couplings SSh and SShh, which is relevant for the dark
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Quartic coupling λ2 only shows up in self-couplings involving S, A and H±. It does not
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In our analysis below, we assume that the CP even scalar S is LIP, therefore the dark
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The Higgs potential in Eq. (3) has seven parameters:

(µ2
1, µ

2
2, λ1, λ2, λ3, λ4, λ5). (10)
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(v, mh, mS, δ1, δ2, λ2, λL). (11)

In particular, λL shows up in the couplings SSh and SShh, which is relevant for the dark
matter annihilation process. It is therefore convenient to pick λL as a model parameter.
Quartic coupling λ2 only shows up in self-couplings involving S, A and H±. It does not
play an important role for the dark matter analysis that we present below.
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Constraints
-

✦ W and Z decay width

W→S/A + H±, Z→S+A, H+H-

III. THEORETICAL AND EXPERIMENTAL CONSTRAINTS

There are various experimental constraints on the IHDM, both from direct searches and
indirect electroweak precision test.

• W and Z decay width
For light H±, S and A, it could lead to the deviation of Z and W decay widths from
the SM value. On the other hand, ΓW,Z has been measured precisely at the LEP
and the Tevatron[21], which agrees well with the SM prediction. Therefore regions in
which decay processes W± → S/A+H±, Z → H+H−, SA are kinematically allowed
have already been excluded. These translate into constraints in the mass regions

2mS + δ1 > mW , 2mS + δ1 + δ2 > mW ,

2mS + δ2 > mZ , 2mS + 2δ1 > mZ . (12)

• Direct collider searches
Light neutral and charged Higgs has been searched at the LEP and the Tevatron.
Limits from conventional searches for H±, S and A, however, does not apply for the
Higgses in the IHDM since those searches reply on the Higgs decaying to fermion
pairs. Neutral and charged Higgses in the IHDM, on the other hand, does not couple
to fermions. In particular, the charged Higgs has been searched for at the LEP
and the Tevatron [22, 23]. A lower mass bound of 74 − 79 GeV at 95% C.L. is
obtained at the LEP [22] considering H+ → cs̄, H+ → τ+ν, or H+ → W ∗A. A more
recent search at CDF[23] studied the charged Higgs produced in the top quark decay
t → H+b, with H+ further decaying into a pair of quarks, leptons, or W+φ. All of
those searches, however, rely on the couplings of the charged Higgs with fermions,
which is absent for H± in the IHDM. Therefore, the collider direct search limit on
the charged Higgs mass does not apply.

Experimental signatures for S, A, H±, however, is similar to that of the neutralino
and charginos in the Minimal Supersymmetric Standard Model (MSSM), as S
appears as missing energy at colliders, similar to the lightest supersymmetric
particle(LSP) in the MSSM. In particular, searches of e+e− → χ0

1χ
0
2 can be

interpreted as searches for e+e− → SA. Therefore, the null result for the neutralino
and chargino searches at the LEP can be used to set limits on m±

H and mA in the
IHDM. A recent analysis [18] argued that a direct application of the upper limit on
the LEP II χ0

1χ
0
2 cross section to the IHDM is oversimplified due to the difference

between the MSSM process χ0
1χ

0
2 and IHDM process SA. Based on DELPHI analyses

of e+e− → χ0
1χ

0
2 with χ0

2 → χ0
1qq̄, µ

+µ−, e+e−, Ref. [18] determined the efficiencies
for the corresponding MSSM and IHDM processes after cuts using Monte-Carlo
simulations. The ratio of the efficiencies is then used to rescale the MSSM cross
section upper limit and applied to the IHDM. It is shown that regions satisfying
mS < 80 GeV, mA < 100 GeV and δ2 > 8 GeV are excluded by LEP II MSSM
searches. This limit is stronger than previous estimations by the direct application
of the χ0

1χ
0
2 cross section upper limit to the IHDM [7, 24]. For δ2 < 8 GeV, however,

5

✦ LEP II constraints

Neutral and charged Higgs searches at LEP and Tevatron: does not apply
rely on VVh coupling and the couplings of Higgses to fermions

Charged Higgs searches: mH± > 74 −79 GeV at 95% C.L.
LEP: 
CDF: t→H+b, with H+ decays to qq’, lν, W+ϕ 

III. THEORETICAL AND EXPERIMENTAL CONSTRAINTS

There are various experimental constraints on the IHDM, both from direct searches and
indirect electroweak precision test.

• W and Z decay width
For light H±, S and A, it could lead to the deviation of Z and W decay widths from
the SM value. On the other hand, ΓW,Z has been measured precisely at the LEP
and the Tevatron[21], which agrees well with the SM prediction. Therefore regions in
which decay processes W± → S/A+H±, Z → H+H−, SA are kinematically allowed
have already been excluded. These translate into constraints in the mass regions

2mS + δ1 > mW , 2mS + δ1 + δ2 > mW ,

2mS + δ2 > mZ , 2mS + 2δ1 > mZ . (12)

• Direct collider searches
Light neutral and charged Higgs has been searched at the LEP and the Tevatron.
Limits from conventional searches for H±, S and A, however, does not apply for the
Higgses in the IHDM since those searches reply on the Higgs decaying to fermion
pairs. Neutral and charged Higgses in the IHDM, on the other hand, does not couple
to fermions. In particular, the charged Higgs has been searched for at the LEP
and the Tevatron [22, 23]. A lower mass bound of 74 − 79 GeV at 95% C.L. is
obtained at the LEP [22] considering H+ → cs̄, H+ → τ+ν, or H+ → W ∗A. A more
recent search at CDF[23] studied the charged Higgs produced in the top quark decay
t → H+b, with H+ further decaying into a pair of quarks, leptons, or W+φ. All of
those searches, however, rely on the couplings of the charged Higgs with fermions,
which is absent for H± in the IHDM. Therefore, the collider direct search limit on
the charged Higgs mass does not apply.

Experimental signatures for S, A, H±, however, is similar to that of the neutralino
and charginos in the Minimal Supersymmetric Standard Model (MSSM), as S
appears as missing energy at colliders, similar to the lightest supersymmetric
particle(LSP) in the MSSM. In particular, searches of e+e− → χ0

1χ
0
2 can be

interpreted as searches for e+e− → SA. Therefore, the null result for the neutralino
and chargino searches at the LEP can be used to set limits on m±

H and mA in the
IHDM. A recent analysis [18] argued that a direct application of the upper limit on
the LEP II χ0

1χ
0
2 cross section to the IHDM is oversimplified due to the difference

between the MSSM process χ0
1χ

0
2 and IHDM process SA. Based on DELPHI analyses

of e+e− → χ0
1χ

0
2 with χ0

2 → χ0
1qq̄, µ

+µ−, e+e−, Ref. [18] determined the efficiencies
for the corresponding MSSM and IHDM processes after cuts using Monte-Carlo
simulations. The ratio of the efficiencies is then used to rescale the MSSM cross
section upper limit and applied to the IHDM. It is shown that regions satisfying
mS < 80 GeV, mA < 100 GeV and δ2 > 8 GeV are excluded by LEP II MSSM
searches. This limit is stronger than previous estimations by the direct application
of the χ0

1χ
0
2 cross section upper limit to the IHDM [7, 24]. For δ2 < 8 GeV, however,
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Constraints
-

MSSM searches: e+e−→ χ10 χ20 with χ20 → χ10 qq/µµ/ee
similar to e+e− → SA with A → Sqq/µµ/ee
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FIG. 6: Production cross section upper limits as extracted
from Fig. 13(d) in [16]. For models inside the (red) solid
[(green) dashed] contour the limits are rescaled by a factor
0.9 (1.1) before being applied to H0A0 production. The solid
(dark blue) contour lines indicate the e+e− → H0A0 cross
section. The (red) dotted-shaded region, where mH0+mA0 <
mZ , is excluded by LEP I data on the Z boson width. The
upper right dashed line shows the LEP II kinematical limit.

modifications might be needed (this calculation is done
with MadGraph/MadEvent).

Finally, we calculate the H0A0 production cross sec-
tion as a function of mH0 and mA0 , and compare it with
our derived cross section upper limits in order to con-
strain the IDM parameter space.

IV. RESULTS

Under our imposed cuts the resulting IDM and MSSM
efficiencies turn out to be quite similar, an appealing,
although not at all trivial, result.

The efficiencies are first determined for each individ-
ual channel (qq̄, µ+µ−, e+e−), after which those are com-
bined into an efficiency representing the actual branching
ratio. This combination is done by weighting the chan-
nels in accordance with the decay branching ratios of
the Z boson (i.e. the qq̄ efficiency is given the highest
weight).

In general we observe that the ratio between our de-
rived IDM and MSSM efficiencies is quite insensitive to
the very details of the imposed cuts, and we estimate our
sensitivity in determining this ratio to be of the order of
10 %.

We find that whenever mH0 ! 80 GeV the IDM effi-
ciencies typically are a few percent higher than those of
the corresponding MSSM models. An important obser-
vation is that we find no mass combinations in this region
where the MSSM gives a higher efficiency than the IDM,
and it is therefore appropriate to apply at least as hard
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FIG. 7: LEP exclusion plot. The (red) dotted-shaded region
indicates the region of the (mH0 ,mA0) plane excluded by LEP
data. The lower left triangle, where mH0 + mA0 < mZ , is
excluded by LEP I data on the Z boson width. The remaining
part of the shaded region is excluded by our LEP II analysis.
Shown is also the LEP II kinematical limit. Since we are
assuming mH0 <mA0 the upper left region is not accessible.

production cross section upper limits on the inert scalars
as those put on the neutralinos in [16].

In the specific region defined by 8 GeV< ∆m <15 GeV
and mH0 ! 85 GeV, the IDM efficiencies are found to be
about a factor 1.15-1.20 higher than those of the MSSM.
On noting that the models with the lowest ∆m have a
slightly higher branching into neutrinos compared to or-
dinary Z boson decay, we in this region adopt a conser-
vative factor of 0.9 with which we rescale the neutralino
production limits given in Fig. 13(d) in [16]. This region
is encircled with a (green) dashed line in Fig. 6.

Among the remaining mH0 " 80 GeV models we find
some for which the ratio between the IDM and MSSM
efficiencies drops down to 0.9. We therefore use a factor
of 1.1 for the rescaling here, and this region is encircled
with a red solid line in Fig. 6.

Except for in the low ∆m and high mH0 regions men-
tioned above we find it appropriate to apply the same
production limits as for the neutralinos. While this might
be argued to be too conservative, the points where harder
limits could possibly be imposed are anyway far from ex-
cluding any IDM model.

By utilizing the limits on the χ̃0
1χ̃

0
2 production from

Fig. 13(d) in [16] we find, after rescaling, upper limits on
the H0A0 production cross section as a function of mH0

and mA0 . The cross section limits, and the regions where
we impose rescaling, are found in Fig. 6. Comparing
these with the calculated e+e− → H0A0 cross sections,
which also are shown in Fig. 6, finally tells us which IDM
models are excluded.

The resulting exclusion plot is shown in Fig. 7.
Roughly speaking, our LEP II analysis exclude models

✦ LEP II constraints

MSSM searches: e+e−→ χ1+ χ1−  similar to e+e− →H+H−

➡ mH± ≥ 70 GeV

E. Lundstrom, M. Gustafsson 
and J. Edsjo, 0810.3924
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MSSM searches: e+e−→ χ10 χ20 with χ20 → χ10 qq/µµ/ee
similar to e+e− → SA with A → Sqq/µµ/ee
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FIG. 6: Production cross section upper limits as extracted
from Fig. 13(d) in [16]. For models inside the (red) solid
[(green) dashed] contour the limits are rescaled by a factor
0.9 (1.1) before being applied to H0A0 production. The solid
(dark blue) contour lines indicate the e+e− → H0A0 cross
section. The (red) dotted-shaded region, where mH0+mA0 <
mZ , is excluded by LEP I data on the Z boson width. The
upper right dashed line shows the LEP II kinematical limit.

modifications might be needed (this calculation is done
with MadGraph/MadEvent).

Finally, we calculate the H0A0 production cross sec-
tion as a function of mH0 and mA0 , and compare it with
our derived cross section upper limits in order to con-
strain the IDM parameter space.

IV. RESULTS

Under our imposed cuts the resulting IDM and MSSM
efficiencies turn out to be quite similar, an appealing,
although not at all trivial, result.

The efficiencies are first determined for each individ-
ual channel (qq̄, µ+µ−, e+e−), after which those are com-
bined into an efficiency representing the actual branching
ratio. This combination is done by weighting the chan-
nels in accordance with the decay branching ratios of
the Z boson (i.e. the qq̄ efficiency is given the highest
weight).

In general we observe that the ratio between our de-
rived IDM and MSSM efficiencies is quite insensitive to
the very details of the imposed cuts, and we estimate our
sensitivity in determining this ratio to be of the order of
10 %.

We find that whenever mH0 ! 80 GeV the IDM effi-
ciencies typically are a few percent higher than those of
the corresponding MSSM models. An important obser-
vation is that we find no mass combinations in this region
where the MSSM gives a higher efficiency than the IDM,
and it is therefore appropriate to apply at least as hard
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FIG. 7: LEP exclusion plot. The (red) dotted-shaded region
indicates the region of the (mH0 ,mA0) plane excluded by LEP
data. The lower left triangle, where mH0 + mA0 < mZ , is
excluded by LEP I data on the Z boson width. The remaining
part of the shaded region is excluded by our LEP II analysis.
Shown is also the LEP II kinematical limit. Since we are
assuming mH0 <mA0 the upper left region is not accessible.

production cross section upper limits on the inert scalars
as those put on the neutralinos in [16].

In the specific region defined by 8 GeV< ∆m <15 GeV
and mH0 ! 85 GeV, the IDM efficiencies are found to be
about a factor 1.15-1.20 higher than those of the MSSM.
On noting that the models with the lowest ∆m have a
slightly higher branching into neutrinos compared to or-
dinary Z boson decay, we in this region adopt a conser-
vative factor of 0.9 with which we rescale the neutralino
production limits given in Fig. 13(d) in [16]. This region
is encircled with a (green) dashed line in Fig. 6.

Among the remaining mH0 " 80 GeV models we find
some for which the ratio between the IDM and MSSM
efficiencies drops down to 0.9. We therefore use a factor
of 1.1 for the rescaling here, and this region is encircled
with a red solid line in Fig. 6.

Except for in the low ∆m and high mH0 regions men-
tioned above we find it appropriate to apply the same
production limits as for the neutralinos. While this might
be argued to be too conservative, the points where harder
limits could possibly be imposed are anyway far from ex-
cluding any IDM model.

By utilizing the limits on the χ̃0
1χ̃

0
2 production from

Fig. 13(d) in [16] we find, after rescaling, upper limits on
the H0A0 production cross section as a function of mH0

and mA0 . The cross section limits, and the regions where
we impose rescaling, are found in Fig. 6. Comparing
these with the calculated e+e− → H0A0 cross sections,
which also are shown in Fig. 6, finally tells us which IDM
models are excluded.

The resulting exclusion plot is shown in Fig. 7.
Roughly speaking, our LEP II analysis exclude models

✦ LEP II constraints

LEP I
mS +mA < mZ

excluded

MSSM searches: e+e−→ χ1+ χ1−  similar to e+e− →H+H−

➡ mH± ≥ 70 GeV

E. Lundstrom, M. Gustafsson 
and J. Edsjo, 0810.3924
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MSSM searches: e+e−→ χ10 χ20 with χ20 → χ10 qq/µµ/ee
similar to e+e− → SA with A → Sqq/µµ/ee
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FIG. 6: Production cross section upper limits as extracted
from Fig. 13(d) in [16]. For models inside the (red) solid
[(green) dashed] contour the limits are rescaled by a factor
0.9 (1.1) before being applied to H0A0 production. The solid
(dark blue) contour lines indicate the e+e− → H0A0 cross
section. The (red) dotted-shaded region, where mH0+mA0 <
mZ , is excluded by LEP I data on the Z boson width. The
upper right dashed line shows the LEP II kinematical limit.

modifications might be needed (this calculation is done
with MadGraph/MadEvent).

Finally, we calculate the H0A0 production cross sec-
tion as a function of mH0 and mA0 , and compare it with
our derived cross section upper limits in order to con-
strain the IDM parameter space.

IV. RESULTS

Under our imposed cuts the resulting IDM and MSSM
efficiencies turn out to be quite similar, an appealing,
although not at all trivial, result.

The efficiencies are first determined for each individ-
ual channel (qq̄, µ+µ−, e+e−), after which those are com-
bined into an efficiency representing the actual branching
ratio. This combination is done by weighting the chan-
nels in accordance with the decay branching ratios of
the Z boson (i.e. the qq̄ efficiency is given the highest
weight).

In general we observe that the ratio between our de-
rived IDM and MSSM efficiencies is quite insensitive to
the very details of the imposed cuts, and we estimate our
sensitivity in determining this ratio to be of the order of
10 %.

We find that whenever mH0 ! 80 GeV the IDM effi-
ciencies typically are a few percent higher than those of
the corresponding MSSM models. An important obser-
vation is that we find no mass combinations in this region
where the MSSM gives a higher efficiency than the IDM,
and it is therefore appropriate to apply at least as hard
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FIG. 7: LEP exclusion plot. The (red) dotted-shaded region
indicates the region of the (mH0 ,mA0) plane excluded by LEP
data. The lower left triangle, where mH0 + mA0 < mZ , is
excluded by LEP I data on the Z boson width. The remaining
part of the shaded region is excluded by our LEP II analysis.
Shown is also the LEP II kinematical limit. Since we are
assuming mH0 <mA0 the upper left region is not accessible.

production cross section upper limits on the inert scalars
as those put on the neutralinos in [16].

In the specific region defined by 8 GeV< ∆m <15 GeV
and mH0 ! 85 GeV, the IDM efficiencies are found to be
about a factor 1.15-1.20 higher than those of the MSSM.
On noting that the models with the lowest ∆m have a
slightly higher branching into neutrinos compared to or-
dinary Z boson decay, we in this region adopt a conser-
vative factor of 0.9 with which we rescale the neutralino
production limits given in Fig. 13(d) in [16]. This region
is encircled with a (green) dashed line in Fig. 6.

Among the remaining mH0 " 80 GeV models we find
some for which the ratio between the IDM and MSSM
efficiencies drops down to 0.9. We therefore use a factor
of 1.1 for the rescaling here, and this region is encircled
with a red solid line in Fig. 6.

Except for in the low ∆m and high mH0 regions men-
tioned above we find it appropriate to apply the same
production limits as for the neutralinos. While this might
be argued to be too conservative, the points where harder
limits could possibly be imposed are anyway far from ex-
cluding any IDM model.

By utilizing the limits on the χ̃0
1χ̃

0
2 production from

Fig. 13(d) in [16] we find, after rescaling, upper limits on
the H0A0 production cross section as a function of mH0

and mA0 . The cross section limits, and the regions where
we impose rescaling, are found in Fig. 6. Comparing
these with the calculated e+e− → H0A0 cross sections,
which also are shown in Fig. 6, finally tells us which IDM
models are excluded.

The resulting exclusion plot is shown in Fig. 7.
Roughly speaking, our LEP II analysis exclude models

✦ LEP II constraints

LEP I
mS +mA < mZ

excluded

LEP II
δ2  > 8 GeV 
mS < 80 GeV
mA < 100 GeV
excluded

MSSM searches: e+e−→ χ1+ χ1−  similar to e+e− →H+H−

➡ mH± ≥ 70 GeV

E. Lundstrom, M. Gustafsson 
and J. Edsjo, 0810.3924
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MSSM searches: e+e−→ χ10 χ20 with χ20 → χ10 qq/µµ/ee
similar to e+e− → SA with A → Sqq/µµ/ee
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FIG. 6: Production cross section upper limits as extracted
from Fig. 13(d) in [16]. For models inside the (red) solid
[(green) dashed] contour the limits are rescaled by a factor
0.9 (1.1) before being applied to H0A0 production. The solid
(dark blue) contour lines indicate the e+e− → H0A0 cross
section. The (red) dotted-shaded region, where mH0+mA0 <
mZ , is excluded by LEP I data on the Z boson width. The
upper right dashed line shows the LEP II kinematical limit.

modifications might be needed (this calculation is done
with MadGraph/MadEvent).

Finally, we calculate the H0A0 production cross sec-
tion as a function of mH0 and mA0 , and compare it with
our derived cross section upper limits in order to con-
strain the IDM parameter space.

IV. RESULTS

Under our imposed cuts the resulting IDM and MSSM
efficiencies turn out to be quite similar, an appealing,
although not at all trivial, result.

The efficiencies are first determined for each individ-
ual channel (qq̄, µ+µ−, e+e−), after which those are com-
bined into an efficiency representing the actual branching
ratio. This combination is done by weighting the chan-
nels in accordance with the decay branching ratios of
the Z boson (i.e. the qq̄ efficiency is given the highest
weight).

In general we observe that the ratio between our de-
rived IDM and MSSM efficiencies is quite insensitive to
the very details of the imposed cuts, and we estimate our
sensitivity in determining this ratio to be of the order of
10 %.

We find that whenever mH0 ! 80 GeV the IDM effi-
ciencies typically are a few percent higher than those of
the corresponding MSSM models. An important obser-
vation is that we find no mass combinations in this region
where the MSSM gives a higher efficiency than the IDM,
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production cross section upper limits on the inert scalars
as those put on the neutralinos in [16].
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slightly higher branching into neutrinos compared to or-
dinary Z boson decay, we in this region adopt a conser-
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production limits given in Fig. 13(d) in [16]. This region
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efficiencies drops down to 0.9. We therefore use a factor
of 1.1 for the rescaling here, and this region is encircled
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and mA0 . The cross section limits, and the regions where
we impose rescaling, are found in Fig. 6. Comparing
these with the calculated e+e− → H0A0 cross sections,
which also are shown in Fig. 6, finally tells us which IDM
models are excluded.

The resulting exclusion plot is shown in Fig. 7.
Roughly speaking, our LEP II analysis exclude models
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➡ mH± ≥ 70 GeV

E. Lundstrom, M. Gustafsson 
and J. Edsjo, 0810.3924



S. Su 9

Electroweak Precision Test
-

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

T

68 % CL

U=0

m
t

m
h

m
t
= 172.7 ± 2.9 GeV

m
h
= 114...1000 GeV

Figure 1: (Adapted from [8].) Dependence of the S, T parameters on the Higgs mass. The thick
black band marks mh = 400 − 600 GeV.

3 The Inert Doublet Model

In this section we will present what seems to us the most attractive realization of the improved
naturalness idea. Some alternatives are described in Section 4.

3.1 The Model

We consider the most general two-Higgs doublet model that possesses the parity

H2 → −H2 (8)

with all other fields invariant. This parity imposes natural flavor conservation in the Higgs
sector[9]3, implying that only H1 couples to matter. The scalar potential is

V = µ2
1|H1|2 + µ2

2|H2|2 + λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2

+ λ4|H†
1H2|2 +

λ5

2
[(H†

1H2)
2 + h.c.]. (9)

We assume that the parameters of this potential yield an asymmetric phase: H1 acquires a vev
but H2 does not4 This is not the well-studied standard phase of the theory that has both vevs

3In standard nomenclature this would be called Type I 2HDM, except that we reverse the usual roles of H1 and
H2.

4This phase of the unbroken parity was considered recently in [10] motivated by neutrino physics. We thank
E. Ma for bringing this to our attention.

5

mh=90 +36 - 27 GeV
mh< 163 GeV @ 95% C.L. 

✦ Electroweak precision test

http://lepewwg.web.cern.ch/LEPEWWG/

http://lepewwg.web.cern.ch/LEPEWWG/
http://lepewwg.web.cern.ch/LEPEWWG/
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FIG. 1: Plot of the allowed region in mass splittings δ1 − δ2 given the constraints on S − T from

the precision electroweak measurements. The value for the SM Higgs mass is set to be 120 GeV
for the left plot and 500 GeV for the right plot. mS is taken to be 75 GeV.

between the dark matter and the scattering nuclei in such scattering processes. Spin-
independent DM−nuclei scattering cross section via h-exchange is many order of
magnitude smaller than the sensitivity of the current and near future dark matter
direct detection experiments. Therefore we do not consider the dark matter direct
detection constraints as long as δ2 is not extremely small.

The bounds from indirect dark matter detection (gamma ray, for example) is very
weak on the IHDM parameter spaces. Moreover, those bounds are subject to the
large astrophysical uncertainties involved in those observations. Therefore, we don’t
consider the constraints from indirect dark matter detection as well.

In addition, we impose the following theoretical constraints:

• Vacuum stability
We require the vacuum stability of the Higgs potential at tree level, which leads to

λ1,2 > 0 (13)

λ3, λ3 + λ4 − |λ5| > −2
√

λ1λ2. (14)

• Perturbativity
We require that the correction to the beta function of λ1 from non-SM quartic
couplings is less than the 50% of the SM term 24λ2

1 [7]. This amounts to the
constraint:

λ2
3 + (λ3 + λ4)

2 + λ2
5 < 12λ2

1, (15)

The evolution of the remaining quartic couplings does not lead to extra constraints.
In addition, we require the quartic coupling λ2 to be in the perturbativity region:

λ2 < 1 (16)

7

mh=120 GeV mh=500 GeV

✦ Electroweak precision test

relic density could be obtained for the dark matter mass around 40 GeV − 80 GeV or larger
than 600 GeV. Ref. [14, 15] studied the neutrino signatures from dark matter annihilation
in the IHDM. Continuous gamma ray spectrum from fragmentation and monochromatic
gamma ray lines are studied in Ref. [13] and [16] respectively. Positron and antiproton
signatures are studied in Ref. [17]. There are also collider analysis on the LEP II limit for
the IHDM [18] as well as collider signatures of SA associated production with A → Sl+l−

at the LHC [19]. Direct detection of the IHDM dark matter has been studied in [7, 13, 20].
In this work, we performed a complete analyzed the dark matter relic in the IHDM

over the whole parameter space, taken into account various theoretical and experimental
constraints on the IHDM. The latest results of the collider constraints based on χ0

1χ
0
2 search

at the LEP are imposed. Unlike in Ref. [13], in which only a low SM Higgs mass mh = 100
GeV and 200 GeV are considered, we also considered a high Higgs mass mh = 500 GeV.
In Ref. [13], the mass splitting between A, H± and the dark matter candidate S is fixed to
be 10 (5) GeV and 50 (10) GeV respectively for low (high) mass region. We studied the
cases when the mass splittings between A, H± and the dark matter candidate S are small,
in which the coannihilation plays an important role, as well as the cases when the mass
splittings are large. In regions that overlap with those analyzed in Ref. [13], our results
agree with the literature. We identified additional regions of parameter space, in which
the dark matter relic density is also consistent with the WMAP result but was overlooked
before. We also present our results in the parameter spaces of physical Higgs masses and
Higgs couplings, which can easily be used for the purpose of collider study and dark matter
detections.

The rest of the paper is organized as follows: Sec. II briefly present the IHDM. We
discussed the theoretical and experimental constraints on the model parameter space in
Sec. III. Sec. IV presented our results on the relic density analysis. We concluded in Sec. V.

II. THE INERT HIGGS DOUBLET MODEL

The IHDM is an extension of the Higgs sector of the SM. Besides the usual Higgs doublet
H1, additional Higgs doublet H2 is introduced:

H2 =

(

H+

(S + iA)/
√

2

)

, (2)

which is charged under SU(2)L × U(1)Y as (2, 1/2). Unlike the SM Higgs boson, which
couples to both the gauge bosons and matter fermions, the extra Higgs doublet couples
to the gauge sector only. Such couplings can be guaranteed by imposing a Z2 symmetry
(sometimes also called as matter parity) where all the particles except H2 are even under the
Z2. While H1 obtains a vacuum expectation value (VEV) v/

√
2 = 174 GeV as in the SM,

H2 does not obtain a VEV: 〈H2〉 = 0. The Z2 symmetry is, therefore, not spontaneously
broken. The lightest particle in H2 is stable and could be a good dark matter candidate.

3
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Dark matter direct detection
-

Current CDMS limit: 10-42 cm2

S A

Z

q q

Avoid such constraints if |mS-mA|> 0.1 GeV

σSI(Z) =
G2

F m2
N

2π
(N − (1− s2

W )Z)2 ∼ 10−31cm2

✦ Dark matter direct detection
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Theoretical constraints
-

✦ Vacuum stability
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FIG. 1: Plot of the allowed region in mass splittings δ1 − δ2 given the constraints on S − T from

the precision electroweak measurements. The value for the SM Higgs mass is set to be 120 GeV
for the left plot and 500 GeV for the right plot. mS is taken to be 75 GeV.

between the dark matter and the scattering nuclei in such scattering processes. Spin-
independent DM−nuclei scattering cross section via h-exchange is many order of
magnitude smaller than the sensitivity of the current and near future dark matter
direct detection experiments. Therefore we do not consider the dark matter direct
detection constraints as long as δ2 is not extremely small.

The bounds from indirect dark matter detection (gamma ray, for example) is very
weak on the IHDM parameter spaces. Moreover, those bounds are subject to the
large astrophysical uncertainties involved in those observations. Therefore, we don’t
consider the constraints from indirect dark matter detection as well.

In addition, we impose the following theoretical constraints:

• Vacuum stability
We require the vacuum stability of the Higgs potential at tree level, which leads to

λ1,2 > 0 (13)

λ3, λ3 + λ4 − |λ5| > −2
√

λ1λ2. (14)

• Perturbativity
We require that the correction to the beta function of λ1 from non-SM quartic
couplings is less than the 50% of the SM term 24λ2

1 [7]. This amounts to the
constraint:

λ2
3 + (λ3 + λ4)

2 + λ2
5 < 12λ2

1, (15)

The evolution of the remaining quartic couplings does not lead to extra constraints.
In addition, we require the quartic coupling λ2 to be in the perturbativity region:

λ2 < 1 (16)
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✦ Perturbativity: RG running of λ1 from non-SM terms < 50% of SM term
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FIG. 1: Plot of the allowed region in mass splittings δ1 − δ2 given the constraints on S − T from

the precision electroweak measurements. The value for the SM Higgs mass is set to be 120 GeV
for the left plot and 500 GeV for the right plot. mS is taken to be 75 GeV.

between the dark matter and the scattering nuclei in such scattering processes. Spin-
independent DM−nuclei scattering cross section via h-exchange is many order of
magnitude smaller than the sensitivity of the current and near future dark matter
direct detection experiments. Therefore we do not consider the dark matter direct
detection constraints as long as δ2 is not extremely small.

The bounds from indirect dark matter detection (gamma ray, for example) is very
weak on the IHDM parameter spaces. Moreover, those bounds are subject to the
large astrophysical uncertainties involved in those observations. Therefore, we don’t
consider the constraints from indirect dark matter detection as well.

In addition, we impose the following theoretical constraints:

• Vacuum stability
We require the vacuum stability of the Higgs potential at tree level, which leads to

λ1,2 > 0 (13)

λ3, λ3 + λ4 − |λ5| > −2
√

λ1λ2. (14)

• Perturbativity
We require that the correction to the beta function of λ1 from non-SM quartic
couplings is less than the 50% of the SM term 24λ2

1 [7]. This amounts to the
constraint:

λ2
3 + (λ3 + λ4)

2 + λ2
5 < 12λ2

1, (15)

The evolution of the remaining quartic couplings does not lead to extra constraints.
In addition, we require the quartic coupling λ2 to be in the perturbativity region:

λ2 < 1 (16)
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the precision electroweak measurements. The value for the SM Higgs mass is set to be 120 GeV
for the left plot and 500 GeV for the right plot. mS is taken to be 75 GeV.

between the dark matter and the scattering nuclei in such scattering processes. Spin-
independent DM−nuclei scattering cross section via h-exchange is many order of
magnitude smaller than the sensitivity of the current and near future dark matter
direct detection experiments. Therefore we do not consider the dark matter direct
detection constraints as long as δ2 is not extremely small.

The bounds from indirect dark matter detection (gamma ray, for example) is very
weak on the IHDM parameter spaces. Moreover, those bounds are subject to the
large astrophysical uncertainties involved in those observations. Therefore, we don’t
consider the constraints from indirect dark matter detection as well.

In addition, we impose the following theoretical constraints:

• Vacuum stability
We require the vacuum stability of the Higgs potential at tree level, which leads to

λ1,2 > 0 (13)

λ3, λ3 + λ4 − |λ5| > −2
√

λ1λ2. (14)

• Perturbativity
We require that the correction to the beta function of λ1 from non-SM quartic
couplings is less than the 50% of the SM term 24λ2

1 [7]. This amounts to the
constraint:

λ2
3 + (λ3 + λ4)

2 + λ2
5 < 12λ2

1, (15)

The evolution of the remaining quartic couplings does not lead to extra constraints.
In addition, we require the quartic coupling λ2 to be in the perturbativity region:

λ2 < 1 (16)
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Dark matter relic density
-

• coannihilation of S, A 

• coannihilation of S, H±

• Use MicrOMEGA /CalCHEP to calculate the relic density

➡ low mass region: mS < 100 GeV

➡ high mass region: mS > 400 GeV

δ1=mH±-mS

δ2=mA-mS

 
A

S

H±

δ2 δ1
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Low mass region: vary δ2
-

• δ2=mA-mS = 10 GeV

δ1=mH±-mS = 50 GeV,  λL=0.01

• δ2=mA-mS = 7 GeV

• δ2=mA-mS = 5 GeV
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FIG. 2: The dependence of the relic density on mS for mh=120 GeV and δ1 = 50 GeV. In the
left plot, δ2 is chosen to be 10 (solid line), 7 (dashed line) and 5 (dash-dotted line) while λL is

fixed to be 0.01. In the right plot, λL is chosen to be 0.01 (solid line), 0.05 (dashed line) and 0.1
(dash-dotted line) while δ2 is fixed to be 10 GeV. The horizontal band indicates the 3 σ region
that is consistent with relic density measurement from WMAP: 0.085 < Ωh2 < 0.139. larger

fonts.

The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation

9
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Low mass region: vary δ2
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• δ2=mA-mS = 10 GeV

δ1=mH±-mS = 50 GeV,  λL=0.01

• δ2=mA-mS = 7 GeV

• δ2=mA-mS = 5 GeV
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FIG. 2: The dependence of the relic density on mS for mh=120 GeV and δ1 = 50 GeV. In the
left plot, δ2 is chosen to be 10 (solid line), 7 (dashed line) and 5 (dash-dotted line) while λL is

fixed to be 0.01. In the right plot, λL is chosen to be 0.01 (solid line), 0.05 (dashed line) and 0.1
(dash-dotted line) while δ2 is fixed to be 10 GeV. The horizontal band indicates the 3 σ region
that is consistent with relic density measurement from WMAP: 0.085 < Ωh2 < 0.139. larger
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The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation
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Low mass region: vary δ2
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fonts.

The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation
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FIG. 2: The dependence of the relic density on mS for mh=120 GeV and δ1 = 50 GeV. In the
left plot, δ2 is chosen to be 10 (solid line), 7 (dashed line) and 5 (dash-dotted line) while λL is

fixed to be 0.01. In the right plot, λL is chosen to be 0.01 (solid line), 0.05 (dashed line) and 0.1
(dash-dotted line) while δ2 is fixed to be 10 GeV. The horizontal band indicates the 3 σ region
that is consistent with relic density measurement from WMAP: 0.085 < Ωh2 < 0.139. larger
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The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation
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FIG. 2: The dependence of the relic density on mS for mh=120 GeV and δ1 = 50 GeV. In the
left plot, δ2 is chosen to be 10 (solid line), 7 (dashed line) and 5 (dash-dotted line) while λL is

fixed to be 0.01. In the right plot, λL is chosen to be 0.01 (solid line), 0.05 (dashed line) and 0.1
(dash-dotted line) while δ2 is fixed to be 10 GeV. The horizontal band indicates the 3 σ region
that is consistent with relic density measurement from WMAP: 0.085 < Ωh2 < 0.139. larger
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The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation
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FIG. 2: The dependence of the relic density on mS for mh=120 GeV and δ1 = 50 GeV. In the
left plot, δ2 is chosen to be 10 (solid line), 7 (dashed line) and 5 (dash-dotted line) while λL is

fixed to be 0.01. In the right plot, λL is chosen to be 0.01 (solid line), 0.05 (dashed line) and 0.1
(dash-dotted line) while δ2 is fixed to be 10 GeV. The horizontal band indicates the 3 σ region
that is consistent with relic density measurement from WMAP: 0.085 < Ωh2 < 0.139. larger
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The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation
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FIG. 2: The dependence of the relic density on mS for mh=120 GeV and δ1 = 50 GeV. In the
left plot, δ2 is chosen to be 10 (solid line), 7 (dashed line) and 5 (dash-dotted line) while λL is

fixed to be 0.01. In the right plot, λL is chosen to be 0.01 (solid line), 0.05 (dashed line) and 0.1
(dash-dotted line) while δ2 is fixed to be 10 GeV. The horizontal band indicates the 3 σ region
that is consistent with relic density measurement from WMAP: 0.085 < Ωh2 < 0.139. larger
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The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation
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FIG. 2: The dependence of the relic density on mS for mh=120 GeV and δ1 = 50 GeV. In the
left plot, δ2 is chosen to be 10 (solid line), 7 (dashed line) and 5 (dash-dotted line) while λL is

fixed to be 0.01. In the right plot, λL is chosen to be 0.01 (solid line), 0.05 (dashed line) and 0.1
(dash-dotted line) while δ2 is fixed to be 10 GeV. The horizontal band indicates the 3 σ region
that is consistent with relic density measurement from WMAP: 0.085 < Ωh2 < 0.139. larger
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The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation
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FIG. 2: The dependence of the relic density on mS for mh=120 GeV and δ1 = 50 GeV. In the
left plot, δ2 is chosen to be 10 (solid line), 7 (dashed line) and 5 (dash-dotted line) while λL is

fixed to be 0.01. In the right plot, λL is chosen to be 0.01 (solid line), 0.05 (dashed line) and 0.1
(dash-dotted line) while δ2 is fixed to be 10 GeV. The horizontal band indicates the 3 σ region
that is consistent with relic density measurement from WMAP: 0.085 < Ωh2 < 0.139. larger
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The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation
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FIG. 2: The dependence of the relic density on mS for mh=120 GeV and δ1 = 50 GeV. In the
left plot, δ2 is chosen to be 10 (solid line), 7 (dashed line) and 5 (dash-dotted line) while λL is

fixed to be 0.01. In the right plot, λL is chosen to be 0.01 (solid line), 0.05 (dashed line) and 0.1
(dash-dotted line) while δ2 is fixed to be 10 GeV. The horizontal band indicates the 3 σ region
that is consistent with relic density measurement from WMAP: 0.085 < Ωh2 < 0.139. larger
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The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation
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FIG. 2: The dependence of the relic density on mS for mh=120 GeV and δ1 = 50 GeV. In the
left plot, δ2 is chosen to be 10 (solid line), 7 (dashed line) and 5 (dash-dotted line) while λL is

fixed to be 0.01. In the right plot, λL is chosen to be 0.01 (solid line), 0.05 (dashed line) and 0.1
(dash-dotted line) while δ2 is fixed to be 10 GeV. The horizontal band indicates the 3 σ region
that is consistent with relic density measurement from WMAP: 0.085 < Ωh2 < 0.139. larger
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The red curve in the left plot corresponds to (δ1, δ2) = (50, 10) GeV. Therefore,
coannihilation between S and A is effective while S and h± coannihilation is not. For
small mS, SS → bb̄ via SM h exchange dominates, with cross section proportional to
λ2

L. The cross section is typically small due to the small bottom Yukawa coupling, which
leads to relic density too big that overclose the Universe. When mS gets larger, SA → qq̄
coannihilation via Z exchange becomes more and more important. The relic density enters
the WMAP 3σ region for mS around 35 GeV. The coannihilation cross section maximizes at
Z-pole: mS +mA ∼ mZ , corresponding to the dip around mS ∼ 40 GeV. Annihilation cross
section decreases when mS increases to be away from the Z-pole region, which makes the
relic density falls back to the allowed region. As mS gets larger, SS → WW ∗ annihilation
via h starts to dominates and the relic density enters the 3σ region again. For mS ∼ mh/2,
SS annihilation hits h-pole, corresponding to the second dip around mS ∼ 60 GeV. The
annihilation cross section gets smaller once mS leaves the mh pole region. When mS

>∼ mW ,
annihilation into WW opens. The annihilation cross section quickly increases and the relic
density drops below the WMAP observed value.

The dahsed and dot-dashed curves in the left plot of Fig. 2 shows the relic density
dependence for δ2=7, 5 GeV respectively. The coannihilation effects gets stronger for
smaller mass splittings. Therefore, for most of the mS region between 40 − 80 GeV, the
annihilation cross section is too large and the relic density is too small.

Three curves in the right plot of Fig. 2 correspond to λL=0.01 (solid), 0.05 (dashed),
0.1 (dash-dotted), respectively, while (δ1, δ2) is fixed to be (50, 10) GeV. Similar features of
Z-pole and h-pole appear. The relic density is smaller for larger λL, since SS annihilation
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-
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-

120_10_50 120_10_10

Low mass region: low mh
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-

120_50_50 120_100_100

strong pert. constraints

Low mass region: low mh
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Low mass region: high mh
-
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High mass region: low mh
-

120_1_1

m
S
 [GeV]

!
L

400 500 600 700 800 900 1000 1100 1200
!0.5

!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

m
S
 [GeV]

!
L

400 500 600 700 800 900 1000 1100 1200
!0.5

!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

FIG. 7: WMAP 3σ allowed region (enclosed by blue curves) in mS − λL plane for mh=120 GeV.

The mass splittings are chosen to be (δ1, δ2) = (1, 1) GeV (left plot), (1, 10) GeV (right plot). Red
region are excluded by vacuum stability while he hatched region are excluded by perturbativity
constraints.

(hatched region), however, shifts to the left for larger δ1,2. Therefore, no allowed region
left if at least one of δ1,2

>∼ xxx GeV. increase one of the delta to see at which delta
there is no allowed region.

For a large SM Higgs mass mh = 500 GeV, large mass splitting δ1
>∼ 150 GeV is needed

to satisfy the precision electroweak constraints. There is no region in mS −λL survive after
all the experimental and theoretical constraints are taken into account. does the relic
density region change for mh? cross section gets smaller, could not compensate
for large δ1.

V. CONCLUSION

We studied the simple extension of the SM Higgs sector when an extra inert Higgs
doublet is introduced that couples to the gauge sector only. The lighter of the neutral
components could be a good dark matter candidate. We explored the parameter regions
of the IHDM, taken into account the relic density constraints from WMAP and various
theoretical and experimental constraints. We showed that there are five distinctive regions
that could provide the right amount of cold dark matter in the Universe while satisfy all
the constraints.

• (I) Low mh, mS ∼ 20 GeV, λL ∼ −0.2 for large δ1 and δ2.

• (II) Low mh, 60 GeV < mS < 80 GeV, −0.2 < λL < 0.2 when at least one of δ1, δ2

is large.

14

120_1_10

• large mh ~ 500 GeV, large δ1, δ2 is needed

annihilation cross section is too large, relic density is too small.

• small mh 
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Viable region for relic density
-

DM SM h mS δ1, δ2 λL

(I) low mS low mh  ~20 GeV both large ~ -0.2

(II) 60 − 80 GeV at least one 
is large

-0.2 − 0.2

(III) high mh 50 − 75 GeV large δ1
δ2 < 8 GeV

-1 − 3

(IV)  ~ 75 GeV large δ1, δ2 -1 − 3

(V) high mS low mh 500 − 1000 GeV small δ1, δ2 -0.2 − 0.2
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Collider signatures
-

+W (*)

+ Z (*)

+W(*)

pp→ AH± → SSZ(∗)W (∗), SSZ(∗)Z(∗)W (∗), SSW (∗)W (∗)W (∗)

pp→ SH± → SSW (∗), SSZ(∗)W (∗)

pp→ SA→ SSZ(∗), SSW (∗)W (∗)

pp→ H+H− → SSW (∗)W (∗), SSW (∗)W (∗)Z(∗), SSW (∗)W (∗)Z(∗)Z(∗).

H±

A

S

Signatures: jets + leptons + missing ET

jets and leptons could be soft for small splittings
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Leptonic signals
-

Focus on purely leptonic signals
• single lepton: SH±

• dilepton: SA, H+H-

• trilepton: AH±

• ...

Dominant background

• WW, ZZ, WZ

Benchmark points

mS  (GeV) (δ1, δ2)  (GeV) λL

(I)  25 (100,100) − 0.2

(II) 79 (50,10) − 0.18

(III) 73 (10,50) 0

(IV) 82 (50,50) − 0.2
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Sig. vs. Bg. cross sections
-

σ (I) (II) (III) (IV)

S
(pb)

pp→SA 0.543 0.475 0.251 0.181

pp→H+H- 0.103 0.093 0.438 0.0852

pp→SH± 0.920 0.356 1.076 0.319

pp→AH± 0.189 0.303 0.372 0.157

B
(pb)

pp→WW 71.8

pp→ZZ 10.0

pp→WZ 27
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Dilepton signal from Z*
-

Signal: pp→SA→SSZ(*)→SSl+l-

Background: 
 

- from IHDM pp→H+H-→SSW(*)W(*)→SSl+l-νν
- from SM 

- pp→WW→l+l-νν
- pp→ZZ→l+l-νν

Dilepton signals: 
 

• pp→SA→SSZ(*)→SSl+l- • pp→H+H-→SSW(*)W(*)→SSl+l-νν 

Two isolated opposite charge e or µ with missing ET, no hard jets.
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Dilepton signal: point I
-

•Benchmark I: mS = 25 GeV, (δ1, δ2)=(100,100) GeV

Signal: pp→SA→SSZ→SSl+l-, l=e,µ

Two isolated opposite charge e or µ with missing ET, no hard jets.
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Dilepton signal: point I
-

•Benchmark I: mS = 25 GeV, (δ1, δ2)=(100,100) GeV

Signal: pp→SA→SSZ→SSl+l-, l=e,µ

Two isolated opposite charge e or µ with missing ET, no hard jets.
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Dilepton signal: point I
-

•Benchmark I: mS = 25 GeV, (δ1, δ2)=(100,100) GeV

Signal: pp→SA→SSZ→SSl+l-, l=e,µ

Two isolated opposite charge e or µ with missing ET, no hard jets.
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Dilepton signal: point I
-

•Benchmark I: mS = 25 GeV, (δ1, δ2)=(100,100) GeV

Cuts
• HT >150 GeV
• MET >15 GeV
• PTl >15 GeV, |ηl|<2.5 
• ΔR(ll)>0.4
• PTZ >50 GeV
• 80 GeV < Mll  < 100 GeV
• no jets with PTi>20 GeV, 
|ηj|<2.5 

before cuts after cuts

S (fb) SA 41.27 5.83

B (fb) H+H- 5 0.048

WW 3404.6 1.21

ZZ 280.8 3.86
L=100 fb-1 S/B 0.115

s/√(B) 8.18

Prelimenary
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-

Low mass region: point IV

•Benchmark IV: mS = 82 GeV, (δ1, δ2)=(50,50) GeV

Signal: pp→SA→SSZ*→SSl+l-, l=e,µ

Two isolated opposite charge e or µ with large missing ET, no hard jets.
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-

Low mass region: point IV

•Benchmark IV: mS = 82 GeV, (δ1, δ2)=(50,50) GeV

Signal: pp→SA→SSZ*→SSl+l-, l=e,µ

Two isolated opposite charge e or µ with large missing ET, no hard jets.
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-

Low mass region: point IV

•Benchmark IV: mS = 82 GeV, (δ1, δ2)=(50,50) GeV

Signal: pp→SA→SSZ*→SSl+l-, l=e,µ

Two isolated opposite charge e or µ with large missing ET, no hard jets.
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-

Low mass region: point IV

•Benchmark IV: mS = 82 GeV, (δ1, δ2)=(50,50) GeV

Cuts  
• HT >200 GeV
• MET >100 GeV
• PTl >15 GeV, |ηl|<2.5 
• cos(ϕll)>0.8
• ΔR(ll)>0.4
• PTZ >100 GeV
• Mll  < 40 GeV
• no jets with PTi>20 GeV, 
|ηj|<2.5 

before cuts after cuts

S (fb) SA 11.42 0.130

B (fb) H+H- 3.56 0

WW 3404.6 0.025

ZZ 280.8 0.0025
L=100 fb-1 S/B 4.70

s/√(B) 7.81

Prelimenary
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-

•Benchmark II: mS = 79 GeV, (δ1, δ2)=(50,10) GeV

Signal: pp→SA→SSZ*→SSl+l-, l=e,µ

Soft leptons. Difficult.

Dilepton signal: point II
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Low mass region: point III
-

•Benchmark III: mS = 73 GeV, (δ1, δ2)=(10,50) GeV

Signal: pp→SA→SSZ*→SSl+l-, l=e,µ; also including AH±

Two isolated opposite charge e or µ with large missing ET, no hard jets.
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Low mass region: point III
-

•Benchmark III: mS = 73 GeV, (δ1, δ2)=(10,50) GeV

Signal: pp→SA→SSZ*→SSl+l-, l=e,µ; also including AH±

Two isolated opposite charge e or µ with large missing ET, no hard jets.
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Low mass region: point III
-

•Benchmark III: mS = 73 GeV, (δ1, δ2)=(10,50) GeV

Signal: pp→SA→SSZ*→SSl+l-, l=e,µ; also including AH±

Two isolated opposite charge e or µ with large missing ET, no hard jets.
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Low mass region: point III
-

•Benchmark III: mS = 73 GeV, (δ1, δ2)=(10,50) GeV

before cuts after cuts

S (fb) SA 19.51 0.146

B (fb) H+H- 17.84 0

WW 3404.6 0.025

ZZ 280.8 0.0025
L=100 fb-1 S/B 5.31

s/√(B) 8.81

Cuts  
• HT >200 GeV
• MET >100 GeV
• PTl >15 GeV, |ηl|<2.5 
• cos(ϕll)>0.8
• ΔR(ll)>0.4
• PTZ >100 GeV
• Mll  < 40 GeV
• no jets with PTi>20 GeV, 
|ηj|<2.5 

Prelimenary
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Collider reach @ LHC
-

mS   (δ1, δ2)   S B S/B S/√(B)

  GeV   GeV fb fb L=100 fb-1

(I)  25 (100,100) 5.826 5.068 0.115 8.18

(II) 75 (50,10) difficult

(III) 75 (10,50) 0.146 0.0276 5.31 8.81

(IV) 75 (50,50) 0.130 0.028 4.70 7.81

pp→SA→SSZ(*)→SSl+l- Prelimenary
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Conclusions

IHDM: provide a scalar WIMP dark matter candidate

Viable regions of parameter spaces provide correct relic density

Rich collider phenomenology

dilepton signal from SA production observable for large δ2 

-

DM SM h mS δ1, δ2 λL

(I) low mS low mh  ~20 GeV both large ~ -0.2

(II) 60 − 80 GeV at least one 
is large

-0.2 − 0.2

(III) high mh 50 − 75 GeV large δ1
δ2 < 8 GeV

-1 − 3

(IV)  ~ 75 GeV large δ1, δ2 -1 − 3

(V) high mS low mh 500 − 1000 GeV small δ1, δ2 -0.2 − 0.2


